

Page 1 of 16

Updated: 14th November 2023

Page 2 of 16

Page 3 of 16

How X3 generates SQL statements

- Data models / Table definitions

You can get a better understanding of how data is stored and used in X3 by reviewing the online help

for Data Models and Table Dictionary, in the Technical Help section at https://online-

help.sageerpx3.com/erp/12/technical-online-help/ (WARNING: this section may not be fully

updated for the latest versions)

e.g. the Normal Sales Order data model (as it was in Feb 2009 anyway…)

https://online-help.sageerpx3.com/erp/12/technical-online-help/
https://online-help.sageerpx3.com/erp/12/technical-online-help/

Page 4 of 16

- Crystal reports

I’ll start with Crystal Reports as it’s relatively easy.

Turn on Print Server debug mode, as described in “Illustrated guide to tracing/debugging Sage X3

Report Server” (https://www.sagecity.com/gb/sage-x3/b/sage-x3-uk-support-

insights/posts/illustrated-guide-to-tracing-debugging-sage-x3-report-server)

Then run the report in question, for me this is report code “ZMSQL”. The crystal report definition file

is included in the training documentation bundle.

https://www.sagecity.com/gb/sage-x3/b/sage-x3-uk-support-insights/posts/illustrated-guide-to-tracing-debugging-sage-x3-report-server
https://www.sagecity.com/gb/sage-x3/b/sage-x3-uk-support-insights/posts/illustrated-guide-to-tracing-debugging-sage-x3-report-server

Page 5 of 16

This generates a couple of files for us to review, which I’ve included in “..\SQLcourse\ReportServer”.

In the “RPT_Trace_ZMSQLtable_CrDll_SEED1.log” file we can find the exact SQL being run by the

report. Crystal Reports always creates one big SQL statement to extract all the needed data to run

the report.

If we look at a more complex report log “RPT_Trace_ADOVAL1.log”, we can see that we still get the

full SQL, with all parameters explicitly used.

Page 6 of 16

- Sage X3 4GL

Before we look at X3 4GL code, let’s take a look at a simple example run in SSMS that uses cursors

and parameters, and procedures… oh and a bit of Dynamic SQL too…!!

This example will try to illustrate roughly how Sage X3 is often working, so we can understand the

SQL traces we see from X3.

Review “CursorTest\zmProcedure.sql” and I’ll provide a cursory explanation of what it is doing

Launch Tools, SQL Server profiler in SSMS

Set tracename to “zmSQLdemo”, set “Tuning” template, save to file

“D:\SageSupport\SQLcourse\zmSQLdemo.trc” then click “Run”

Turn on “include actual execution plan” then execute the procedure and we can see the SQL which

then executes as a cursor which iterates in batches of 20 (default if not specified)

Stop the tracing, and check the SQL trace as well where we see the FETCH API_CURSOR lines

Page 7 of 16

When reviewing SQL traces from Sage X3 performance issues, it can sometimes be the FETCH

API_CURSOR which is shown as the top SQL running…

See my output in “..\SQLcourse\CursorTest\SQLoutputs\zmSQLdemo.trc”

- Finding the SQL in X3

Run following SQL to show basic data:

 select * from SEED.ZMSQL

I have some custom 4GL code to run a query against my custom table “ZMCURSORTEST.src”.

Copy this file to “..\folders\SEED\TRT” and compile using Script Editor

Use calculator to create engine trace

openlog(“TRA”,15)

Activate SQL Server trace, select “Tuning” option, leave rest as default.

 Execute the 4GL test case, then stop the logging

closelog()

Deactivate trace

Page 8 of 16

See my outputs in “..\SQLcourse\CursorTest\X3codeOutputs”

In F40059.tra we can see 111 records have been returned as expected.

F40060.tra is the SQL trace from X3 but is a bit difficult to read.

In the trace file “SQLTRC51-2023-06-28T15-31-18-223.trc”, we can see the cursor. Notice it seems to

be doing 342 reads (there are 310 records in the table) however it is overreporting by 2 each time

(uses 20 row cursor size):

“x3diary_admin_7340_0.tra” is the sadoss trace output and we see here the calls to SQL Server.

Once we find the SQL in line 748 we can review the cursor fetches in a bit more detail… here we can

see the cursor opening, the first cursor read “lecture 1er enreg du curseur de For sur SEED.ZMSQL”

the fetches of data “Fetch base, nombre d enreg fetches” and finally where the cursor is closed

“fermeture du curseur”

This confirms there are 310 records fetched and passed back to the adonix process to be processed

“Rowid lu pour la table 9” Notice there is no WHERE clause on the SQL, which is why all 310 rows

are returned…

Page 9 of 16

The adonix engine trace log is “x3diary_admin_8232_0.tra”

• The adonix trace only show the SELECT statements, not INSERT, UPDATE, DELETE

• You do not see the bind parameters passed into the SQL statement at execution time

Searching for ZMCURSORTEST in the trace doesn’t really show anything that interesting other than

the SQL itself.

Page 10 of 16

Repeat the above steps for “ZMCURSORTEST_PARAM.src” reviewing the outputs from

“..\SQLcourse\CursorTest\X3codeOutputs\ParamOutputs” and notice the differences (as we are

explicitly looking for one record using an explicit index in the 4GL code.

Sadly the F40067.tra truncates the full SQL output, so to find the parameter we need the SQL trace

file itself.

NOTE: regards testing X3 generated SQL from within SSMS: if you have SQL which isn’t returning

the right records, it’s probably worth trying the generated SQL in SSMS to confirm results and

investigate further. If however your concern is a performance issue, then you will likely not see

the same issue when running the SQL through SSMS, at least when cursors are used.

- Finding the SQL used for user input in screens.

It is pretty much the same as for the 4GL code just discussed, in that we can use the Diagnosis tools

in the same way. After launching the custom “SQL Demo screen”, turn on SQL trace and Engine

trace.

Page 11 of 16

Query on the left list for Cust.No. “GB4”then select GB46

Insert new record

Turn off Engine trace and Deactivate SQL trace, then review the log files.

The Adonix trace file show the SELECT SQL statements, but no INSERT

The Sadoss trace shows all the SQL, including the INSERT

Page 12 of 16

Similarly in the SQL trace we can find the INSERT as well as the other statements, and here we can

also see the parameters used.

Page 13 of 16

- Requesters

All requesters allow you to create your own enquiries, however I will only touch briefly on SQL

Requester – as it is to do with SQL statements.

The main points to note are that there should not be any reference to a folder name in the SQL, you

can reference tables and/or views, and there are some restrictions on the more complex SQL you are

allowed to use.

Page 14 of 16

A quick bit of techy
There are some interesting areas for Database Administrators (DBA) which can be reviewed using the

SQL server tools directly (SSMS) but are also available via the X3 front end.

- Statistics

- Missing or added indexes

- Database optimisation

Allows you to activate a pre-defined custom index (Copy from X3 folder) or add your own

Connect to X3 folder first

As with adding any custom index, you should perform your own testing to confirm the benefit of
adding the index outweighs any disadvantage introduced.

Page 15 of 16

SQL you can use
- Investigation Scripts

See PDF “07 - Investigation Scripts.pdf” from “Index page: Sage X3 Technical Support Tips and Tricks

(September 2021)” (https://www.sagecity.com/gb/sage-x3/b/sage-x3-uk-support-

insights/posts/index-page-sage-x3-technical-support-tips-and-tricks-september-2021)

Take a look at “..\InvestigationScripts\SQL \mzBatchJobs.sql” if we get time

- Common Tools data model SQL examples

Available from the Sage University training courses “Understanding the Sage X3[Common Tools,

Distribution| Manufactoring] data model”

https://www.sagecity.com/gb/sage-x3/b/sage-x3-uk-support-insights/posts/index-page-sage-x3-technical-support-tips-and-tricks-september-2021
https://www.sagecity.com/gb/sage-x3/b/sage-x3-uk-support-insights/posts/index-page-sage-x3-technical-support-tips-and-tricks-september-2021

Page 16 of 16

Appendix - Additional learning

Sage University

Using Sage X3 SQL Views to create Requesters/Queries - Level 1

Using Sage X3 SQL Views to create Requesters/Queries - Level 2

Understanding 4GL as an Implementation Consultant – Part 1

Understanding 4GL as an Implementation Consultant – Part 2

Understanding the Sage X3 common tools data model

Understanding the Sage X3 distribution data model

Understanding the Sage X3 manufacturing data model

What’s new in SQL 2022

https://learn.microsoft.com/en-us/shows/data-exposed/introduction-to-sql-server-2022-ep1

https://learn.microsoft.com/en-gb/sql/sql-server/what-s-new-in-sql-server-2022?view=sql-server-

ver16

https://learn.microsoft.com/en-us/shows/data-exposed/introduction-to-sql-server-2022-ep1
https://learn.microsoft.com/en-gb/sql/sql-server/what-s-new-in-sql-server-2022?view=sql-server-ver16
https://learn.microsoft.com/en-gb/sql/sql-server/what-s-new-in-sql-server-2022?view=sql-server-ver16

