
Deep-dive into
Sage X3 Engine
Traces
Richard Perrins — 5th October 2022

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Contents
Introducing Sage X3 Engine Traces

Mode Notes

Enabling/Disabling Tracing

To 256 ….

… and beyond

Timing Logs and Engine Traces

What Now?

Recap and conclusions

Appendix

Page 2

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Introducing Sage X3
Engine Traces

Page 3

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What are Engine Trace Files ?

Engine Trace files are text-files which record low-level information about the execution of processes
associated with Sage X3 – as we shall see, Trace Files can be generated for both adonix and
sadoss/sadora processes, depending on the Modes specified at the time the Trace is enabled.

These Engine Trace Files are under the control of the runtime process and are in addition to the
normal Trace Files which are generated by the Sage X3 Functions.

The information output from the normal Trace Files is controlled by the Applications Code, and it
normally provides information relevant to the task – for example, it could be a report of what
Postings have been done and/or any errors encountered.

The Engine Trace Files are independent of the applications-code – the content is generated by the
systems-code – so the feature is implicitly available in all Classic Functions.

Page 4

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Why are we interested in Engine Traces?

Engine Traces provide a mechanism for gaining insights into the inner workings of Sage X3 – at both
the Applications and the Systems Levels.

In addition, as we’ll see later, we can also use them to record the time taken to execute particular
code-blocks within the Applications.

Both of the above can provide useful information when investigating issues in Sage X3.

The most value can be gained when using the Engine Trace files in conjunction with the Code – as
such, the interpretation of the Engine Trace files is normally carried-out by Sage’s Customer
Services Team as they have access to the Code.

Page 5

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What can Engine Traces tell us?

Before enabling Engine Tracing, we should consider a Check-list

1) Confirm the Patch Level – this will enable us to look at the correct version of the Source Code

2) Provide relevant Trace-files – ensure that Tracing is enabled for the minimum time encapsulating the issue – if

investigating a performance issue, then enable the Tracing just before executing the Action (such as Posting)

and disable the Tracing as soon as control has been returned to the screen (able to execute another

Calculator Action). If the Menu Item errors or exits, then the Trace will stop when control is returned to the

Menu.

3) Use a relevant Trace Flag Level

4) Might SQL Traces (SQL Profiler/Extended Events) help? There can be instances where examining the SQL

Statements in conjunction with Trace Files can help to understand what a program is doing – in particular,

when your issue involves a function not returning expected results.

Page 6

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What can Engine Traces tell us?
Engine Tracing can provide varying levels of information, depending on what “Mode” you specify.

Here is the official list of Modes you can use:

Each mode has a “channel” prefix on each line of the Engine Trace file to distinguish which “Mode”
it relates to.

Page 7

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Mode Notes

Page 8

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What do you get from the different Modes?
Mode 1: Only the execution of the Gosub, Call, Callmet, and Fmet engine instructions.

With Mode 1, you get <channel 1> and <channel 3> which equate to code-block calls and the returns:

Page 9

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What do you get from the different Modes?
Mode 2: Execution of all engine instructions.

With Mode 2, you get <channel 2> and <channel 3> which equate to all 4GL instructions including
code-block calls and the returns respectively:

Page 10

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What do you get from the different Modes?
Mode 4: Execution of the Read or For statements when they are used to access the database.

With Mode 4, you only get the Database Statements such as Read, Write, Delete and Re-write – this is
recorded by the adonix process:

This can be useful when correlating with SQL Tracing.

Page 11

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What do you get from the different Modes?
Mode 8: Technical data feed exchanged between the SAFE X3 engine and the sadxxx driver.

With Mode 8, you only get the Database Statements such as Read, Write, Delete and Re-write - the
information is provided by the relevant sadoss/sadora process rather than adonix as is the case with
Mode 4:

Page 12

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What do you get from the different Modes?
Mode 16: Technical JSON data feeds between the client and the web server.

With Mode 16, information relating to any JSON traffic is recorded – this could be Representations
such as ACHGENVX3 (used during logging in), License checking, Queries such as ACH021 which is
part of the Buyer Landing Page, Options such as Read-only pages > Financials > Analytical
Dimensions (referencing CACCE Representation), Batch Server Requests, and even screen/message
information.

This mode should be run with start_log (see later)

Page 13

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What do you get from the different Modes?
Mode 32: Technical binary data feeds between the web server and the Sage X3 server for Classic
pages.

Mode 32 records information about screen-drawing in great detail – not sure how much assistance
this would be?

Page 14

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What do you get from the different Modes?
Mode 64: Technical exchanges between the LDAP server and the Sage X3 server.

Mode 64 is designed to record LDAP traffic at the Classic level, but it’s no-longer used since V6.

Page 15

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What do you get from the different Modes?
Mode 128: Only the execution of the Opadxd instruction (Technical).

Mode 128 records information about opadxd which is supposed to be a binary used by the Java Bridge.

However, even if Java Bridge isn’t installed, ordinary Classic functions trigger writes to the trace-file…

The output doesn’t look very interesting.

Page 16

© 2022 The Sage Group plc, or its licensors. All rights reserved.

256…

Page 17

Mode 256: Technical exchanges linked to the runtime starting phase.

This mode needs to be enabled in start_log as it relates to the initialisation of adonix

processes.

Each adonix process has its own Trace file in runtime\tmp folder created when the adonix is

executed and updated when the adonix is terminated.

WARNING : As this is done via start_log, even Batch Server and Web Services adonix processes

are recorded – we’d advise you to set Batch Server and Web Pools to not auto-start if you’re

going to use start_log.

If start_log is set up before a User logs in, the initialisation of their first adonix is also

recorded, and it is updated when the User logs out. As mentioned before, unfortunately, the

Trace files for Function adonix processes don’t record the deletion/destruction of the

Function-level processes as well as the creation.

© 2022 The Sage Group plc, or its licensors. All rights reserved.

256…

Page 18

Mode 256

The Trace files for adonix processes relating to Functions have “starting MENU script”

© 2022 The Sage Group plc, or its licensors. All rights reserved.

256…

Page 19

Mode 256

Whereas, the initial login adonix is similar, but records “starting ASYRMAIN script”, and then

“ASYRMAIN script finished” followed by five additional lines – see below:

© 2022 The Sage Group plc, or its licensors. All rights reserved.

How to enable/disable
Engine Tracing

Page 20

© 2022 The Sage Group plc, or its licensors. All rights reserved.

How to enable and disable Engine Traces
Now we know a little about Engine Traces and what’s available, how do we actually enable and
disable them?

There are five mechanisms:

1) Interactive OpenLog()

2) Adding Tracing to the 4GL Code

3) X3 session log

4) “start_log” – the nuclear Option

5) Activation Timing (see next section)

Page 21

© 2022 The Sage Group plc, or its licensors. All rights reserved.

How to enable and disable Engine Traces
1) Interactive OpenLog()

In a typical scenario, the User will be starting and stopping the Engine Trace via the built-in
Diagnosis > Calculator option

The User will be prompted to type in text and should type in OpenLog() – it will be of the form

OpenLog(<volume-name>,<flag-value>).

For example, OpenLog(“TRA”,2) – to start the Trace, and then CloseLog() to stop the trace.

The Trace-file will be created in the <folder>\<volume-name> directory – for example,

d:\sage\X3\LIVE\TRA\.

Page 22

© 2022 The Sage Group plc, or its licensors. All rights reserved.

How to enable and disable Engine Traces
2. Adding Tracing to 4GL Code

Page 23

As well as starting and stopping Tracing interactively, the Developer can add code to

manage Trace Files – this allows them to target certain areas of the programs without the

need for Users to start/stop the Traces.

This is done using OpenLog(), CloseLog() and GetLogname() calls in the code.

If these are used, there should be some condition in the code for enabling/disabling the

calls – perhaps an Activity Code, or execution under specific Conditions (e.g. a particular X3

User or Site) – to record information only when necessary.

Details can be found in the Online Help

https://online-help.sageerpx3.com/erp/12/staticpost/openlog/

Also, see Sage City articles cited in the Appendix.

https://online-help.sageerpx3.com/erp/12/staticpost/openlog/?highlight=openlog

© 2022 The Sage Group plc, or its licensors. All rights reserved.

How to enable and disable Engine Traces
3. X3 session log

Page 24

Administration > Usage > Logs > X3 session log

This mechanism allows you to set up a Trace for a particular User and/or Function as

necessary.

Note that this has changed in V12 Patch 27 - see The Session Log Function got a revamped

look Sage City article.

It has the following features:

1) As mentioned, you can target a particular User, Endpoint and/or Function

2) You can enable/disable the tracing outside the Function in question when required –

so, a User can create a Session Log aimed at another User and enable it just before that

User runs a process or task.

3) The recording starts as soon as the Function is launched, rather than when the Tracing

is enabled within Calculator.

https://www.sagecity.com/us/sage_erp_x3/b/sageerp_x3_product_support_blog/posts/the-session-log-function-got-a-revamped-look-come-see-what-s-changed

© 2022 The Sage Group plc, or its licensors. All rights reserved.

How to enable and disable Engine Traces
3. X3 session log

Page 25

4. This sort of Trace can be associated with different types of task:

5. This Trace will remain active until it is explicitly disabled – please remember to do this
as soon as possible

© 2022 The Sage Group plc, or its licensors. All rights reserved.

How to enable and disable Engine Traces
3. X3 session log

Page 26

6. It applies to all currently-running and future/new sessions – so, if you Enable the logging
without specifying any User or Function, it will Trace any Function activity for launched
after it’s been Enabled. – you can see the list of Functions being actively Traced:

© 2022 The Sage Group plc, or its licensors. All rights reserved.

How to enable and disable Engine Traces
3. X3 session log

Page 27

5. The Trace file name are much more meaningful than those from other mechanisms:

© 2022 The Sage Group plc, or its licensors. All rights reserved.

How to enable and disable Engine Traces
3. X3 session log

Page 28

© 2022 The Sage Group plc, or its licensors. All rights reserved.

How to enable and disable Engine Traces
3. X3 session log

Page 29

© 2022 The Sage Group plc, or its licensors. All rights reserved.

How to enable and disable Engine Traces
4. “start_log” – the Nuclear Option

Page 30

As hinted-at earlier, there is a fourth way to enable Tracing: start_log. This is the name of a

file which needs to be placed in the runtime\tmp folder, and it should contain a flag-value.

The actual Trace Files generated by this will be created in runtime\tmp folder as well.

I call this the “Nuclear Option” because it will record activity for all adonix sessions,

including Batch Server and Web Service Pools, so it would be wise to stop Batch Server and

Web Services Pools if possible in order to avoid confusion and too many spurious tra-files.

Even with just the Batch Server stopped, there seems to be a regular set of trace-files

created for each Web Services Pool Channel.

It is required that you stop and restart the runtime when you create start_log and then when

you remove/rename it.

This option should ONLY be used under supervision of Sage Support.

© 2022 The Sage Group plc, or its licensors. All rights reserved.

How to enable and disable Engine Traces

Page 31

This option and X3 session log have to be used if you want to do a trace involving Mode 16 or

256.

As this affects all sessions, it must be used sparingly and for the minimal amount of time –

once you’ve carried out the necessary task, remove the start_log file before doing anything

else. Ideally, find out the process-ids of the Task before it’s complete so you know which tra-

file(s) are relevant.

This option and X3 Session log are the ones to use if you want to get a trace of what’s going

on before control is given over to the screen – before that point, you won’t be able to enable

Tracing through Diagnostics>Calculator.

© 2022 The Sage Group plc, or its licensors. All rights reserved.

To 256…

Page 32

© 2022 The Sage Group plc, or its licensors. All rights reserved.

To 256...

Page 33

But the above Modes are only the beginning – as mentioned in my previous BP Presentation

(see Appendix), you can combine these Modes to record more “Channels”.

As you might remember from my previous Presentation on the subject, my “go-to” setting is

“7”, so I’d do OpenLog(“TRA”,7) – this will generate an Engine Trace file combining Modes 1,

2 and 4 – i.e. channels 1, 2, 3 and 4

© 2022 The Sage Group plc, or its licensors. All rights reserved.

256…

Page 34

I’ve created a spread-sheet to summarise how the Tracing actually behaves when combining

different Modes to generate the Flag Value used at the time of enabling the Trace (in

whichever mechanism you decide to use)

In the following slides, I show the behaviour around each of the official Modes (i.e. 1, 2, 4, 8,

16, 32, 64 , 128 and 256).

There are, of course, more combinations but I just show the “highlights”.

So, the TRA-files will record activity for the channels in each cell with a cross in it – as per

my Flag 7 example above.

© 2022 The Sage Group plc, or its licensors. All rights reserved.

256…

Page 35

The different combinations around the first three Modes (1, 2 and 4) can be summarised as

follows:

© 2022 The Sage Group plc, or its licensors. All rights reserved.

256…

Page 36

This shows the different combinations when using Mode 8 which records sadoss/sadora

calls.

Note the “separate file” comment for Mode 8 – this is because Flag values 9 to 15 combine

“sadoss/sadora” Trace Mode 8 with “adonix” Trace Modes 1, 2 and 4 – these two types of

Trace go into separate Trace Files.

There is no way to “link” the content of the sadxxx and adonix Trace-files.

© 2022 The Sage Group plc, or its licensors. All rights reserved.

256…

Page 37

Here’s the behaviour from 16 to 20 when you want to record JSON traffic

Note the asterisk – this means the start_log should be used, rather than Diagnosis >

Calculator to get any output

© 2022 The Sage Group plc, or its licensors. All rights reserved.

256…

Page 38

Here’s the behaviour involving Mode 32 if you’re very interested in tracing Screen-handling

activity

© 2022 The Sage Group plc, or its licensors. All rights reserved.

256…

Page 39

When I tried using Mode 64 to see LDAP traffic, there was no output as it was only relevant to

V6.

© 2022 The Sage Group plc, or its licensors. All rights reserved.

256…

Page 40

Here’s the behaviour from 128 to record opadxd / JavaBridge traffic (even if JavaBridge

isn’t installed) – the content without JavaBridge doesn’t look very informative…

Again, as you go up the scale of Flag Values, more Modes are included – right up to the

maximum of 255 where all of them are being recorded (even if Mode 64 is not outputting).

© 2022 The Sage Group plc, or its licensors. All rights reserved.

256…

Page 41

Mode 256

Here are some highlights for 256 plus:

© 2022 The Sage Group plc, or its licensors. All rights reserved.

… and Beyond

Page 42

© 2022 The Sage Group plc, or its licensors. All rights reserved.

… and beyond

Page 43

While preparing for this Presentation, I came across 2 additional, undocumented Modes:

Mode 512

This mode records every code-block call and variables as well as the runtime stack and 4GL Call

Stack, so you can see the call-nesting.

Mode 514

This mode records the values of Systems variables.

© 2022 The Sage Group plc, or its licensors. All rights reserved.

… and beyond

Page 44

Mode 512

This mode records every code-block call and variable values as well as the runtime stack and

4GL Call Stack, so you can see the call-nesting.

It also records low-level calls which are related to tasks such as opening Tables

© 2022 The Sage Group plc, or its licensors. All rights reserved.

… and beyond

Page 45

© 2022 The Sage Group plc, or its licensors. All rights reserved.

… and beyond

So, this is interesting – being able to see the values of variables at runtime means you can almost
see the data flowing – variables are used when constructing SQL Statements.

Page 46

© 2022 The Sage Group plc, or its licensors. All rights reserved.

… and beyond

Page 47

Mode 514

Well, it was all going so well – we had a very logical set of Modes before we got to this point!

You’d expect 514 to be 512 + 2, but you get extras in the shape of Systems variable such as

COUZON and ACTION, as well as Mode 2 channels 2 and 3.

© 2022 The Sage Group plc, or its licensors. All rights reserved.

… and beyond
As we’ve just seen, you *can* get Modes beyond the official 128, and the combinations of the Modes
are more complex for 512 and 514. So, this is another quick summary of the different combinations –
other combinations are available….

Page 48

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Timing Logs and
Engine Traces

Page 49

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Timing Logs and Engine Traces
X3 has a built-in facility to record and analyse the execution times of each call to a subroutine or

function – this is accessed via the options Activation timing and Reading timing which turn on and

turn off the Timing Trace respectively.

Page 50

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Timing Logs and Engine Traces
This feature generates a tra-file in the Folder’s TRA directory and a report which defaults to being

called <X3-user>.tra in the runtime\tmp folder:

Page 51

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Timing Logs and Engine Traces
The “normal” F????.tra file in the Folder’s TRA directory shows a summary of how long was spent in

each code-block - the number of calls to the block, the total duration, and the percentage of the full

time recorded.

Page 52

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Timing Logs and Engine Traces
The other Trace File, typically runtime\tmp\<user>.tra, holds information which can be further

analysed by Sage Support if you need further assistance with interpreting the output

Page 53

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Timing Logs and Engine Traces
Note that V12 Patch 27 introduced a new feature – in the same way as X3 session logs has been

enhanced - you can now launch the equivalent of an OpenLog() by ticking the second Activation

button in the “Runtime” section, and select the Flag-values.

The Tracing is enabled for the current function and only stops recording when the Trace is disabled.

Page 54

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Timing Logs and Engine Traces

This shows that there are even more modes which aren’t normally publicised!

Page 55

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Timing Logs and Engine Traces
Mode 1024

This is related to the sandbox – for example, loading files and attachments.

Page 56

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Timing Logs and Engine Traces
Mode 2048 – Session Management

This Mode records the starting-up of several phases of X3 sessions and should be enabled via

start_log for most effect (i.e. recording the login/logout):

Logging in

Page 57

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Timing Logs and Engine Traces
Mode 2048 – Session Management

Launching Sales Orders

Page 58

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Timing Logs and Engine Traces
Mode 2048 – Session Management

Logging out of X3

Page 59

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Timing Logs and Engine Traces
Flag Value 2049 – Session Management Mode 2048 plus Mode 1

This shows how just adding one to the flag-value can increase the tracing quite substantially:

Launching Sales Orders

Launching GESSOH

Page 60

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Timing Logs and Engine Traces
Flag Value 2049 – Session Management Mode 2048 plus Mode 1

This shows how just adding one to the flag-value can increase the tracing quite substantially:

Exiting Sales Orders and logging out – this is recorded in the Function’s adonix trace-file as

Followed by

Page 61

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Timing Logs and Engine Traces
Flag Value 2049 – Session Management Mode 2048 plus Mode 1

Logging out – this is recorded in the Initial Login’s adonix trace-file as

And at the end of the Trace file:

Page 62

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Timing Logs and Engine Traces
Mode 4096 – File Access Time

Page 63

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Timing Logs and Engine Traces
Mode 4100 – File Access Time (4096) plus Modes 1, 2, 3 and 4

Again, adding extra Modes to the Flag Value enhances the Tracing

Page 64

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Timing Logs and Engine Traces
Mode 8192 – Memory Usage

This records the memory usage of each Adonix process – the last figure is the adonix process’s heap-

size in bytes.

Page 65

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Timing Logs and Engine Traces
Mode 8207 – Memory Usage + 1, 2, 3, 4, 8

Again, adding extra Modes to the Flag Value enhances the Tracing

Page 66

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What now?

Page 67

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What now?
So, you’re now the proud owner of one or more Engine Trace files – what do you do with them?

Well, you *could* send them to Sage Customer Services for analysis – especially if we’ve requested
them!

OR

You could do some analysis in-house.

It depends on a few things:

1) The environment – has it got specific Customisations in it which may have an impact on the
issue being investigated?

2) Is the Data/Configuration very complex – probably not recreateable outside this environment?

3) Who requested the trace?

Page 68

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What now?
What sorts of things can you do?

Example 1: Performance issue in one Folder

Well, the simplest thing you could do is start a Timing Trace – that would provide a high-level
analysis of how long the program is in each code-block – it could give you a hint as to where the
issue lies. If further analysis is required, the two trace-files could be sent to Sage Customer Services
for analysis.

Another option is to run an Engine Trace such as OpenLog(“TRA”,7) and send it to Customer Services
for analysis – the timing information is embedded in the Trace File in the form of the “tick” values
which are in milliseconds. The advantage of this is, that it will show the flow through the program
and also show the Database interactions – this will allow us to corellate it with the Code itself.

Page 69

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What now?
Example 1: Performance issue in one Folder

I had a case where a BP reported that certain functions were taking longer than expected to save new
data or open the screens in a particular Folder but not in another Folder.

I asked for trace-files from both Folders and used our Internal X3Analyzer to produce a read-out of
where the time was taken – the results were as follows

Page 70

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What now?

This shows that the largest amount of time was taken by calls to SYSTEME2 in ORDSYS.

With this in mind, we looked at the Trace file in more depth to see what was being executed within
that code-block

Page 71

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What now?

Page 72

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What now?
From experience, this shows that VersionOne’s EDM Suite has been installed and Activated.

Looking at the Trace-file from the other Folder, there is no mention of XV1IMAGE_CHECK so EDM is
not Active in the Folder.

The Business Partner confirmed this to be the case, and de-activated EDM – this resolved the issue

Page 73

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What now?
Example 2: Is it Standard?

As you all know, X3 is very customiseable – either through Configuration settings, or by adding
Customised Code.

Again, we can use OpenLog(“TRA”,7) to record the path taken during execution and see if there are
any Custom executables being called.

Having taken a copy of the Trace-file, you can just find calls to Folder-specific executables :

type <trace-file> | findstr “@TEST.TRT” > non_standard.txt

For example x3diary_reg_43334_0.tra | findstr “@TEST.TRT” > non_standard.txt

This will produce a list of lines where the binary is in the Folder’s TRT directory – either because it’s
generated by a Folder Validation, or it’s Custom Code.

Page 74

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What now?
You can then weed-out most of the executables generated by a Validation

Type non_standard.txt | findstr /v “TRT/W” > not_validated.txt

Now you can see if there are any executables with the name including “SPE”/”SPV” or starting with X,
Y or Z – hopefully, the Developers are using the Naming Conventions!

Page 75

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What now?
Example 3: Spot the difference

You may be lucky enough to have an issue which occurs in one Folder or with one Site, but the
function is ok with a different Folder or Site. In this sort of case, you could do separate Traces under
the different conditions and then do a “diff” on them to see what is different.

Unfortunately, many lines will be different by default due to the “tick” values at the end of each line
- I wrote a little bit of Perl Script to chop off the tick-values to avoid this

Page 76

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What now?
Example 4: What did this process call?

I’ve had a case where adonix processes have continued to run, even when nobody’s logged in and it
looked like there was no way to determine what the adonix process was running because the
Development > Utilities > Verifications > System monitor > Users (PSADX) option didn’t show the
Process ID seen in Task Manager – the processes weren’t showing in ASYSINTERN, ASYSSMPROCES
tables either.

One way of discovering what Function was associate with an adonix process is to set up start_log
with Flag Value 1 – this will record the minimum amount of information for any adonix processes.

Then, you can look at the Trace file with that Process ID in runtime\tmp folder – search for “Gosub
ENTREE From EXEFNC” and you’ll find an instance which is a call to the Function

Page 77

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What now?
Example 4: What did this process call?

Fortunately, it can record more than one Function launch in the same Trace File, so it’s best to go to
the end of the file and search backwards

You could refine the search for the call by seeing what GOBJSUB line triggers the Action – in this
case, both SUBSOH and SUBPOH were launched from the line @X3.TRT/GOBJSUB$adx(2642).

If you want the Session ID and sadoss/sadora Process IDs as well, you could use Flag Value 2049

Page 78

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What now?
Example 4: What did this process call?

Page 79

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What now?
Example 5: Where did it go wrong?

Sometimes, a Function fails and doesn’t update some tables – how do you find out where abouts this
happens in the code?

Well, this calls for Mode 4 to be active for all Database events – as usual, I’d go for Flag Value 7 to get
the best idea of the code-flow.

When our Applications update the Database, they do so within a Database Transaction. If a Database
Transaction fails, then a “Rollback” is executed to revert any data updated within the Transaction’s
scope.

So, look for Trbegin which denotes the start of a Database Transaction and then Commit and
Rollback denote the points at which Transactions are committed to the database on successful
completion or rolled-back on failure.

Page 80

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What now?
Example 5: Where did it go wrong?

A Transaction that succeeds – Trbegin followed by a Commit

Page 81

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What now?
Example 5: Where did it go wrong?

A Transaction that fails – Trbegin followed by a Rollback

Page 82

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What now?
Example 6: What’s wrong with my Web Services?

I’ve just had a case where a Web Service wasn’t working, (giving a timeout error) – even in the Classic
SOAP option – so we needed to investigate where it was failing.

So, I advocated using X3 session log with Trace Value 7 - I went for this as it allows for enabling
Tracing “remotely” on a specific type of adonix sessions such as Web Services.

This showed that the problem was with a particular Read statement. Running the statement in SMSS
gave the same behaviour, so the underlying view was modified and this improved matters.

Page 83

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Recap and Conclusions

What’s it good for?

What do you get from it?

Self Help

Page 84

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What’s it good for?
Well, it’s good for gaining insight into what’s going on within the code when you run Functions – you
can see what adonix executables are being run and which code-blocks are being called.

You can see what Database Statements are being run – this can be useful in conjunction with
Database Traces.

You’re even privy to the values of runtime variables.

You can see how much time is spent within code-blocks – more information can be obtained by
sending the Trace Files to Customer Services.

You can see what JSON text is being processed.

Page 85

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What do you get from it?
Well, this depends on what you put in!

As discussed, you can enable/disable Engine Tracing from five places:

1. Diagnosis > Calculator – good for ad hoc Tracing

2. 4GL Code – selective Tracing controlled by the Program

3. X3 session log – can configure and control Tracing for other sessions

4. Runtime\tmp\start_log – last restort!

5. Activation Timing – good for high-level timing investigations. Also overlaps mechanism 1

The goal of your investigation determines which mechanism you should use.

Your goal also determines what Flag Value you decide to use – what sort of aspect(s) of X3 are you
looking at?

Again, the mechanism you use determines *where* the output goes:
Page 86

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What do you get from it?
Where did it go?

1. Diagnosis > Calculator – Trace Files are output to the volume specified in the OpenLog() call –

typically, to <folder>\TRA ;

2. 4GL Code – as with Calculator, the Code will have the Volume to be written to

x3diary_<user>_<proc-id>_<revision>.tra.

3. X3 session log – to runtime\logs\<timestamp>_adonix_<flags>_<user>_<proc-

id>_<label>_<revision>. Tra

4. Start_log – this will output runtime\tmp\ x3diary_<user>_<proc-id>_<revision>.tra

5. Activate Timing - to runtime\logs\<timestamp>_adonix_<flags>_<user>_<proc-

id>_<function>_<revision>. Tra

Page 87

© 2022 The Sage Group plc, or its licensors. All rights reserved.

What do you get from it?
The fourth mechanism seems to be different in V11 and V12 – in V11, it records Mode 8 in its separate

file, but in V12, it doesn’t seem to.

The fifth mechanism may be useful if you’re interested in Mode 8 and don’t want to use start_log but

it does have the disadvantage that it doesn’t record activity before control is handed-over to the

User (to use Activation Timing to start the recording), and is a bit more cumbersome.

The Flag Value will also determine if you get a second Trace File for the sadoss/sadora activity by

including Mode 8.

Personally, I can’t see any need to use Mode 8.

Page 88

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Self Help
I have seen cases where Business Partners have been able to “zero-in” on where the issue lies, and

this can be very helpful – for resolving issues internally, or for passing on as part of the initial Case

comment.

I didn’t test every Flag Value and my highlights from the spreadsheet are not comprehensive, so you

could try your own Flag Value(s) – you could use the Mode-selector in Activation timing to calculate

the Flag Value you want.

Remember to think about what sorts of information you want to get from the Trace – I’d go for a

“More is better” approach if possible as you can always discount particular <channel> lines after

getting the trace file in, but you can’t get them if they’re not there.

Remember that start_log is the last resort - virtually all scenarios will be covered by the other

mechanisms, with X3 session log being a good substitute for start_log.

Page 89

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Appendix

Some additional reading

Page 90

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Previous presentations

• Index page: Sage X3 Technical Support Tips and Tricks (March 2021) Index page: Sage X3 Technical Support Tips
and Tricks (March 2021) - Sage X3 UK Support & Insights - Sage X3 UK - Sage City Community

• Introduction to tracing classic functions

Page 91

https://www.sagecity.com/gb/sage-x3-uk/b/sage-x3-uk-support-insights/posts/sage-x3-technical-support-tips-and-tricks---march-2021-index

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Knowledgebase articles

• How to run an Engine Trace in Sage X3?

https://support.na.sage.com/selfservice/viewdocument.do?externalId=73801

• Microsoft's Extended Events and Sage X3?

https://support.na.sage.com/selfservice/viewdocument.do?externalId=83828

Page 92

https://support.na.sage.com/selfservice/viewdocument.do?externalId=73801
https://support.na.sage.com/selfservice/viewdocument.do?externalId=83828

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Sage City Blog articles
Extra articles demonstrating how Tracing can be added to Import/Export routines and Web Services
programmatically:

• Illustrated guide to tracing Imports and Exports

https://www.sagecity.com/gb/sage-x3-uk/b/sage-x3-uk-support-insights/posts/tracing-imports-
and-exports

• Illustrated guide to tracing Web Services

https://www.sagecity.com/gb/sage-x3-uk/b/sage-x3-uk-support-insights/posts/illustrated-guide-to-
tracing-web-services

Page 93

https://www.sagecity.com/gb/sage-x3-uk/b/sage-x3-uk-support-insights/posts/tracing-imports-and-exports
https://www.sagecity.com/gb/sage-x3-uk/b/sage-x3-uk-support-insights/posts/illustrated-guide-to-tracing-web-services

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Miscellaneous
Trace File size limit

An interesting point, which may come in handy, can be noted when Mode 512 is used – it reveals a configuration
setting which can be used to increase the number of lines recorded in a Trace file :

HKEY_LOCAL_MACHINE\SOFTWARE\Adonix\X3RUNTIME\<solution-name>\ADX_LOG_MAX_LINES is a String
(REG_SZ) with the maximum number of lines per Trace file – the default is 2000000.

Page 94

© 2022 The Sage Group plc, or its licensors. All rights reserved.

Miscellaneous
Timing/Ticks

When you’re using Engine Traces, you may have noticed lines with “tick” on them.

These are actually timing values in milliseconds, so you could do some timing/performance analysis yourselves
– as per Example 6 earlier.

As mentioned earlier, having these tick-values available in the Engine Traces does make it possible to drill into
the code. Again, Trace Value 7 is a good start.

Page 95

© 2022 The Sage Group plc or its licensors. All rights reserved. Sage,
Sage logos, and Sage product and service names mentioned herein
are the trademarks of Sage Global Services Limited or its licensors.

All other trademarks are the property of their respective owners.

Questions?

© 2022 The Sage Group plc or its licensors. All rights reserved. Sage,
Sage logos, and Sage product and service names mentioned herein
are the trademarks of Sage Global Services Limited or its licensors.

All other trademarks are the property of their respective owners.

Thank you!

