
ProvideX

ODBC Local and Client/Server
Version 4.10

Introduction 3

Installation Procedures 6

Local & Client Configuration 10

Server Configuration 19

Table Definitions 26

Using the ODBC Driver 40

ProvideX is a trademark of Sage Software Canada Ltd.
All other products referred to in this document are trademarks or registered trademarks of their
respective trademark holders.

©2006 Sage Software Canada Ltd. — Printed in Canada
8920 Woodbine Ave. Suite 400, Markham, Ontario, Canada L3R 9W9

All rights reserved. Reproduction in whole or in part without permission is prohibited.

The capabilities, system requirements and/or compatibility with third-party products described herein
are subject to change without notice. Refer our website www.pvx.com for current information.

Publication Release: 4.10

ProvideX ODBC Driver 4.10 3 Back

ProvideX ODBC

Int roduction

ProvideX ODBC products deliver third party access to ProvideX data. They enable
any ODBC-compliant application on any Windows platform to communicate with
your ProvideX database from any location on the network. Currently, two ProvideX
ODBC configurations are available for download:

• Local ODBC (with read only or read/write capabilities).

• Client/Server ODBC (TCP-based, part of the Professional or eCommerce bundle).

These products are available separately from the base ProvideX installation and
require separate licenses, installation files, and activation procedures. Contact your
dealer/distributor or visit the ProvideX website at www.pvx.com for the latest
information on ODBC product options and licensing.

This document discusses the basic concepts and features of ProvideX ODBC. It
covers installation and configuration procedures for both local driver and
client-server versions, defining/accessing data files, and use of the ODBC driver to
access ProvideX data from other languages and applications.

What is ODBC?

ODBC is the acronym for Open DataBase Connectivity, an interface standard that
maintains a common access method for DBMS (DataBase Management Systems). The
ODBC interface provides a standard set of functions or APIs (Application Program
Interfaces) that allow applications to access a variety of ODBC-compliant databases.
It also administers the database names and drivers associated with the data files.

ODBC access is based on SQL (Structured Query Language) which is an English-like
database access language designed to enable end-users to view and manipulate data
files. Over the years, the SQL language has been standardized by ANSI and adopted
by a large number of database manufacturers. SQL’s original intent was to provide
ad-hoc access to data — but not as a development language or as a database
interface tool. With the advent of ODBC and other generic interfaces, SQL became
the de-facto standard used to manipulate databases.

ODBC Local and Client Server Introduction

ProvideX ODBC Driver 4.10 4 Back

Because the SQL language is English-like in its structure, it is easy to learn and
understand. The basic SQL directives are:

Example:

SELECT cst_id, cst_name FROM Customer

This retrieves customer numbers and names from the Customer file. For more
information on the use of SQL with ProvideX ODBC, see Using the ODBC Driver, p.40.

ODBC Architecture

Typically, the standard ODBC architecture consists of four major components:

This architecture enables an application to access different ODBC data sources, in
different locations, using the same function calls available in the ODBC API.
Components interact in the following chain of events:

1. ODBC-compliant application uses API calls to submit SQL directives to the data
source.

2. Communication between the application and ODBC driver is handled by the driver
manager, which loads the driver and passes along the API requests.

3. The ODBC driver implements ODBC API functions for the selected DBMS data source.

4. Requests are processed by the data source, and the results are sent back up the chain to
be retrieved by the application.

SELECT to read and return data

UPDATE to alter existing data records

INSERT to add records

DELETE to remove data records

Application Responsible for interacting with the user and for calling ODBC
functions to submit SQL statements to, and retrieve results from,
one or more data sources.

Driver Processes the ODBC function calls, submits SQL requests to a
specific data source, and returns results to applications. Also, the
driver is responsible for interacting with the software needed to
access a specific data source.

Driver Manager Loads/calls drivers on behalf of an application. The driver manager
processes ODBC function calls or passes them to the driver.

Data Source Represents the data to be accessed. It can be a flat-file, or a
particular database in a DBMS. It also refers to the actual location
of the data as well as any technical information needed to access
the data (driver name, network address, user ID, password, etc.)

ODBC Local and Client Server Introduction

ProvideX ODBC Driver 4.10 5 Back

Why Use ODBC/SQL?

ODBC allows your ProvideX data to be accessed by the most popular database
managers, query applications, and report writers: MS SQL Server, Excel or Word with
MSQUERY, Informix, and Crystal Reports, just to name a few. Most programming
languages have an ODBC access facility to allow files to be read or updated as well.

ODBC/SQL allows standardized access to ProvideX data via:

• Standardized Data Formats: Text strings, numerics, dates.

• Logical Relationships: Relates files with common data elements.

• Data Sorting, Grouping and Filtering.

• Simple Data Computations: Sum, Max, Min, Count, Avg.

The ProvideX ODBC driver supports three basic types of data: strings, numerics, and
dates.

The SELECT statement is used to establish logical relationships between data files
(usually referred to as joining files). A typical JOIN would be:

SELECT cst_id, cst_name, smn_name FROM Customer, Salesman
WHERE smn_id = cst_smn

The statement reads the entire Customer file and for each customer, reads the
Salesman file for any records whose smn_id matches cst_smn. If the field smn_id is
a Key field for the file, then the ProvideX ODBC driver reads the file directly by key,
otherwise the file is read in its entirety. The WHERE clause can be used to selectively
filter out any unwanted data.

The ODBC driver can sort the data on any field using the ORDER BY clause of the
SELECT statement. If the ORDER BY fields match any of the key fields of the primary
file, then the primary file is accessed by this key. In addition, you can GROUP data BY
common fields.

SUM, COUNT, AVG, MAX, MIN functions can be used to provide statistical information
on the data fields.

You can find a list of SQL keywords supported by the driver in Appendix A.

ODBC Local and Client Server Installation Procedures

ProvideX ODBC Driver 4.10 6 Back

Installation Procedures B MK

Ins tallation Pr ocedures

Installation files for ProvideX ODBC driver and File Server can be obtained from
your dealer/distributor or downloaded directly from the ProvideX website,
www.pvx.com. In order to set up and run a ProvideX ODBC product, you must
obtain the appropriate license, serial number, user count, and activation key for the
configuration you require:

• Local ODBC driver (with read only or read/write capabilities). Each license
requires its own serial number, user count, and activation key.

• Client-Server ODBC via the ProvideX File Server (licensed and activated as part of the
Professional and eCommerce bundles). Client versions of the ODBC driver are
freely-distributable, but must be connected to a running copy of the ProvideX File
Server. To ensure compatibility, the client and server-side components must maintain
the same version number.

The following sections describe procedures for the installation of ProvideX ODBC
components on different platforms: Windows - ProvideX ODBC Driver or File Server
and UNIX/Linux - ProvideX File Server. Information on configuring data sources via the
Windows ODBC Data Source Administrator can be found under the heading Local & Client
Configuration, p.10. ProvideX File Server settings for Windows and UNIX/Linux are
explained under the heading Server Configuration, p.19.

Windows - ProvideX ODBC Driver or File Server

Installation programs for the Windows configurations of the ProvideX ODBC Driver and
the ProvideX File Server can be obtained from your dealer/distributor or from the
ProvideX website. The installation process is virtually identical for all local, client and
server components:

1. After downloading the appropriate installation program, remain connected to the
Internet. The installation process may include some options to download
additional MDAC components.

2. Double-click on the installation program that was downloaded to your computer to
begin the installation process. This launches a series of InstallShield Wizard panels,
starting with the License Agreement dialogue.

3. Click Next > to continue. The installation program searches for existing ProvideX
ODBC components then displays different dialogue windows, depending on
whether it is a completely new install, or if similar (older or newer) components
already exist on your machine.

• If upgrading from an earlier ODBC driver you have the option to update System
DSN entries – User and File DSN entries are not updated and should be removed
or adjusted prior to upgrading.

Note: ProvideX ODBC installations are available with or without Microsoft Data
Access Components. If you choose not to install MDAC, the installation automatically
verifies if your current version of MDAC (if any) is compatible with ProvideX ODBC.

ODBC Local and Client Server Installation Procedures

ProvideX ODBC Driver 4.10 7 Back

• If identical ODBC components exist on your machine, you will also be given the
option to modify, repair, or remove existing driver/server components.

• If you are installing the ProvideX File Server and a ProvideX File service and/or
ProvideX ODBC service is already running on your computer, you will be warned
that the existing service must be stopped before the installation can continue.

• If you are installing the ODBC driver for the first time, you will be asked to
select the Install Type.

Server Side Licensing means that you are installing a Client version of the ODBC
driver in a client-server configuration that requires access to the ProvideX File
Server. No license or activation will be requested.

Client Side Licensing means that you are installing a Local (standalone) version
of the ODBC driver that requires its own serial number, user count, and activation
key. This also allows client access to a ProvideX File Server (where applicable).

When the installation wizard has verified the above criteria and is cleared to
proceed, it takes you through a series of dialogues. Follow the wizard instructions
and click Next > to complete each step. The final step installs driver/server
components onto your hard disk and displays a progress bar to indicate the
current installation status. This process may take several minutes.

4. When all components are copied to disk, an activation dialogue will appear (for
new Local installations) otherwise the Wizard simply indicates that the driver or
server has been updated successfully. A valid serial number, number of users, and
activation key are required in order to set up and run a Local (standalone) version
of the ODBC driver. To obtain the necessary activation, contact Sage Software
Canada Ltd or your authorized ProvideX dealer/distributor.

ODBC Local and Client Server Installation Procedures

ProvideX ODBC Driver 4.10 8 Back

The ProvideX ODBC activation dialogue appears as follows:

If you press OK and the activation is invalid, you will be given the option to enter your
information again. If you press Cancel, the activation utility automatically records a
demo mode activation for the ODBC Server; in this case, the activation dialogue pops
up for every ODBC connection and a "nag" message is repeated continuously during
execution. Refer to Local & Client Configuration for configuration details.

UNIX/Linux - ProvideX File Server

Obtain the ProvideX File Server distribution file from your dealer/distributor or via
the ProvideX website. Ensure that you download the correct version for your specific
UNIX/Linux operating system. The distribution file is named with a.taz extension,
which is short for.tar.Z , a compressed version of a UNIX .tar file:

file-server-ver-os-cpu.taz

Where:

Note: When installing the ODBC driver as part of an eCommerce or Professional
licence, use your temporary key for permanent ODBC activation. Permanent keys that
are generated for bundled activations do not apply to ODBC components.

ver identifies the version of the server; e.g., 4.10.1000.
os identifies a specific operating system; e.g., redhat.7-32bit.
cpu identifies the processor type; e.g., x86.

ODBC Local and Client Server Installation Procedures

ProvideX ODBC Driver 4.10 9 Back

The file-server-ver-op.taz distribution file contains the following installation
components:

After you download the poxxxvvv.taz file to a /tmp directory, follow these steps to
expand, install, and activate the ProvideX File Server program on your computer:

1. Change directories to the /tmp directory and rename the poxxxvvv.taz with a
.tar.Z extension so that it can be uncompressed:
umask 0
cd /tmp
mv poxxxvvv.taz poxxxvvv.tar.Z
uncompress poxxxvvv.tar.Z

2. Create the new directory to receive the ProvideX software, then change into it. We
recommend that you use /usr/pvxiosvr for the directory name; e.g.,
mkdir /usr/pvxiosvr
cd /usr/pvxiosvr

3. Use the tar command to copy the software into the /usr/pvxiosvr directory:
tar xvf /tmp/poxxxvvv.tar

4. If required, set the file permissions on the pvxiosvr executable and configuration
files to whatever is necessary depending on the username who will be running the
server daemon (typically root):

chmod 500 pvxiosvr
chmod 600 pvxiosvr.conf.sample
chown root pvx*
chgrp root pvx*

5. If this is the first time the server has been installed on the system, then copy the
pvxiosvr.conf.sample file to pvxiosvr.conf.

cp pvxiosvr.conf.sample pvxiosvr.conf

At this point, the installation of the server is complete; however, the
pvxiosvr.conf file may require updated settings. For configuration/activation
details and the list of command line arguments, refer to the ProvideX ODBC
Server Settings for UNIX/Linux, p.22.

pvxiosvr ProvideX File Server executable.
pvxiosvr.conf.sample ProvideX File Server configuration file (sample).
install.txt Installation readme file.
license.txt License agreement.
pvxodbcxxx.txt ODBC version readme file describing current changes.

ODBC Local and Client Server Local & Client Configuration

ProvideX ODBC Driver 4.10 10 Back

Local & Client Configuration B MK

Local & Client Configuration

The ProvideX ODBC local driver and the Client component of the Client/Server
driver are configured using the ODBC Data Source Administrator, which can be accessed
via the Windows Control Panel (in the Administrative Tools subfolder on Windows XP):

This is where you define each database and set up associated configuration details; i.e.,
• Data Source.
• Directory containing a ProvideX Data Dictionary file providex.ddf.
• INI file used when manually defined.
• Company and User codes.
• Options.

Either the data file directory or the INI file, (or both), must be defined. There must be
at least one source for a Data Dictionary. If both have been specified, then the
contents of both will be merged. Additional ProvideX File Server settings are
required for the client-server version of the driver:
• Server Name or IP (e.g., LocalHost or 127.0.0.1)
• TCP/IP Port (default: 20222).

Data Source Names (DSN)

A data source defines the location of data, and the connection information needed to
access that data. In effect, it defines the path to the data, which may include a
network, library, server, database, and other attributes.

ODBC Local and Client Server Local & Client Configuration

ProvideX ODBC Driver 4.10 11 Back

In order to establish a connection to a data source, you must do the following:

1. Ensure that the appropriate ODBC driver is installed on the client or local
computer. This is described under Installation Procedures, p.6.

2. Use the ODBC Data Source Administrator to set up a data source name (DSN) to store
the necessary connection information in the Windows registry or in a DSN file.

If the ODBC connection information is stored in the Windows registry, it is called a
machine data source. A machine data source can be either a user data source (one
user has access) or a system data source (visible to all users on, or connected to, the
same computer). The main advantage to having a machine data source is that it
provides security within the system to limit who is logged on to view the data source
and restrict the ability to copy the data source to other computers. Machine data
sources can only be used on the computer where they are defined.

If the ODBC connection information is stored in a DSN file, it is called a file data
source. A file data source is defined in a flat text file and, unlike machine data
sources, they can be ported to any system. The main advantage to having a file data
source is that it can be placed in common directories and shared between users; e.g.,
a file DSN can be distributed among clients as a part of an installation package.

The ODBC Data Source Administrator interface allows you to choose between
different DSN tabs, depending on the type of data source to be modified:

Click on one of the tabs to list the current connections for that DSN type. From here
you can change/remove an existing DSN or add/configure a new one.

Creating a New DSN
To create a new DSN for ProvideX ODBC, click the Add button. The next dialogue
displays a list of the ODBC drivers that are installed on your system. Select the
appropriate ProvideX ODBC Driver from the list and click Finish. This invokes the
ProvideX ODBC Driver Setup dialogue, which allows you to create and configure
access to a ProvideX database.

Dialogues for the Local driver and the Client component of the Client/Server driver
are identical, except for the Server Name and TCP/IP fields.

User DSN Defines machine data sources for the user currently signed on.

System DSN Defines machine data sources for a particular workstation.

File DSN Places and maintains data source definitions in a portable text file.

Note: As mentioned earlier, the ProvideX ODBC installation routine will only update
System DSN entries. User and File DSN entries are not updated during the installation
and cannot be accessed once the existing driver is upgraded.

ODBC Local and Client Server Local & Client Configuration

ProvideX ODBC Driver 4.10 12 Back

The setup dialogue for ProvideX ODBC Version 4 appears as follows:

Basic Configuration Entries

The following fields appear when the driver setup dialogue is initially displayed:

Data Source Name: Name (DSN) that other applications will use to access the
database. Case-insensitive, maximum length is 32 characters.

With regards to the ProvideX ODBC driver, the DSN can be
considered the logical name of the database. The following
characters are not permitted in a DSN:

[] { } () , ; ? * = ! @ \

Description: Optional free form remark describing the Data Source Name.
Maximum length is 127 characters.

Database Directory: Location of the ProvideX Data Dictionary file (providex.ddf)
which is the relative starting point for all embedded file
references. Maximum length is 127 characters. If used with Sage
MAS 90, then the directory must contain the DDICT directory.

If providex.ddf is found in this directory, then all file/table
definitions contained in it are made available to the ODBC
driver. Using the embedded data dictionary simplifies the
installation and maintenance issues regarding the ODBC
driver.

ODBC Local and Client Server Local & Client Configuration

ProvideX ODBC Driver 4.10 13 Back

Server The following entries set up the client component of the Client/Server version of the
ProvideX ODBC driver:

The providex.ddf file located in the database directory can
be set up to contain only a subset of the files used by an
application. This can be used to control which files/tables are
presented to the end-user. In order to provide different
"views" of the database, create separate directories, each
containing a different providex.ddf file.

Note that the providex.dde file is not required by the
ODBC driver. For more information, see ProvideX Data
Dictionary, p.26.

Definition File: Path and name of the INI file used to define the data
dictionary manually for files that cannot be handled by the
ProvideX embedded data dictionary. Maximum length is 127
characters.

For more information, see INI Definition, p.29.

Server Name or IP: Server network name or IP address required for connecting to
the ProvideX File Server. Maximum length is 100 characters.
For example,

ProvideXFileServer
or
127.34.28.15

ODBC Local and Client Server Local & Client Configuration

ProvideX ODBC Driver 4.10 14 Back

Logon Default values can be set in the Company code, User ID, Password and Session ID
fields for use in the definition of data file pathnames. Whenever a data file pathname
starts with an equal sign =, the pathname will be scanned. All occurrences of %C$ will
be replaced with the value set in the default company code, %U$ will be replaced with
the default user ID and %S$ will be replaced with the default Session ID. The search
for occurrences is case-insensitive, thus %c$ and %C$ will both be found and replaced
with the value of the company code field.

When using Sage MAS 90 data files, the ODBC driver will prompt the user to enter a
valid company and user ID when invalid data is used during a database connection.
For other databases, enter a question mark ? in any of the optional fields during the
DSN setup and the driver will prompt for the values during a database connection.
There is no validation of the values entered.

The following optional fields are found under the Logon tab of the setup dialogue:

TCP/IP Port: TCP/IP Port required for connecting to the ProvideX File
Server. Default is 20222. Maximum length is 15 characters.

You can change the TCP/IP port that the server is listening on
via the Control Panel Configuration program, in which case
the DSN TCP/IP Port setting on the client side must be
changed as well.

Company code: Optional value to replace occurrences of %C$ in a definition
pathname. Maximum length is 127 characters.

Default User ID: Optional value to replace occurrences of %U$ in a definition
pathname. Maximum length is 64 characters.

ODBC Local and Client Server Local & Client Configuration

ProvideX ODBC Driver 4.10 15 Back

Options The setup dialogue provides for further optional settings under the Options tab:

Password: Optional password value — used in conjunction with a Sage
MAS 90 system only. Maximum length is 63 characters.

Session ID: Optional value to replace occurrences of %S$ in a definition
pathname. Maximum length is 15 characters.

This parameter provides the ability for applications to create
temporary files that can be accessed from an ODBC
application. Once the temporary file has been generated, the
complete file name, or a portion of the name can either be
manually entered into the DSN information, or sent to the
driver programmatically using a connection string.

Prefix: Search paths to be inserted in front of all relative file
references used in Data Dictionary or INI definitions. Use a
comma ’,’ separator between multiple prefixes. The
maximum length is 1023 characters.

Views DLL: Path to pvxwin32.dll. This is required by the ODBC in
order to use the Views system (ProvideX Version 5.10 or
later).

Enforce Double: Checkbox to set default format of "double" for numeric data.
This helps avoid conflicts with MS Office 2000 and other
applications that do not support the decimal data type for
numeric values.

ODBC Local and Client Server Local & Client Configuration

ProvideX ODBC Driver 4.10 16 Back

Performance Tuning
The following options provide methods to reduce overhead when processing a file:

NULL Date: Checkbox to suppress invalid date error. The driver validates
the contents of date columns at run time. If a value is invalid,
the driver generates an error message and ceases processing
of the table. This replaces an invalid entry with a null value
and allows the driver to continue processing.

Keys Restrict: Checkbox to restrict keys. This option allows the driver to be
used with an application such as Lotus Approach 97, which
does not support keys, or supports them with limitations on
length, field segments, or use of sub-strings.

Strip trailing
spaces:

Checkbox to suppress trailing spaces. This option enables
space-padded values to be treated as delimited values. If this
option is enabled, then the expression '123 ' = '123'
would be considered true (otherwise it is false).

Silent Mode: Checkbox to suppress most prompts or message boxes that
the ODBC driver generates during processing.

Cache Size: Establishes the amount of memory to use for local storage of
intermediate results. If this value is zero, then intermediate
information will not be cached locally on the workstation.
Instead, it must be re-acquired from the server, which may
lead to poorer performance on slower connections.
If a cache size is specified then that amount of system
memory will be used to store information locally. Once the
specified amount of memory is utilized, the driver will store
additional information in a temporary disk file on the local
workstation.
Performance gains will vary with the environment. In a high
bandwidth environment (LAN), caching may not be as
beneficial as in a low bandwidth environment (WAN), where
the impact can be significant.

Dirty Read: Checkbox for Dirty Read mode of operation to skip the
normal file consistency checks. Dirty reads can speed file
processing by reducing the number of locks issued against a
file. However this may result in inconsistent data should the
file be updated while being read by the ODBC driver.

ODBC Local and Client Server Local & Client Configuration

ProvideX ODBC Driver 4.10 17 Back

Normally, when the ODBC driver accesses data files, it must place a temporary lock
on the file. This temporary lock guarantees that the driver reads key tables and
structures that are in a consistent state and not in the process of being altered.

Once the temporary lock is established, the driver checks the file header to see if it
has been changed since the last time the file was accessed. If the file has not been
altered, then the ODBC driver can use any of the data still maintained in its buffers.
If the file has been altered, then all data in the buffers is discarded. When the driver
has completed its access to the data file, the temporary lock is released.

The process is repeated for each file accessed by the driver, for each operation on the file.

Debug The debug option traces active sessions within the ProvideX ODBC driver and
generates a log file. This reports internal diagnostic information that is different from
the SQL tracing provided by the Microsoft ODBC Driver Manager.

The following fields set the debug option and log file:

Burst mode: Checkbox to enable Burst mode to reduce some of the
overhead created by temporary locks. The ODBC driver locks
the file header for either 50 file operations or three-tenths of a
second, whichever occurs first. This decreases the number of
times the file must be locked, and the number of times that
internal buffers may need to be reloaded. See the explanation
below for more information on the effect of temporary locks.

Enable Debug: Checkbox to enable the ProvideX ODBC debug option.
Log File: Path and name of debug log file. If this field is left blank then the

driver defaults to C:\pvxodbc.log.

ODBC Local and Client Server Local & Client Configuration

ProvideX ODBC Driver 4.10 18 Back

Connection String Keywords

The ODBC driver recognizes keywords as part of a connection string. The format is
keyword=value (case-insensitive) with multiple entries separated by semi-colons; e.g.,
DSN=MyDSN;UID=John;PWD=foo;Company=ABC. The keywords are listed below:

Connection String Button to invoke a display of the connection string returned by
the driver. If using SQLDriverConnect then the information
displayed in the area above the button is the connection string
representing the currently saved DSN attributes. See Connection
String Keywords below.

Test Connection Button to test the connection to the configured database. If
successful then the area above the button will display the
following:
Connection succeeded.
Datasource includes x tables.
Where x is the number of tables reported for the database.

BurstMode 0 burst mode off, 1 burst mode on.
Company Company code.
Debug 0 debug output off, 1 debug output on.
Description Description of the DSN (optional).
Directory Directory containing the providex.ddf file.
DirtyReads 0 dirty read off, 1 dirty read on.
DRIVER Name of the driver to use (DSN-less connection).
DSN Name of the DSN to use for default values.
EnforceDouble 0 do not force numerics to double, 1 report all numerics as double.
EnforceNullDate 0 null date off, 1 null date on.
FILEDSN Name of the file DSN to use for default values.
IniFile Directory and file name of the INI file to be used.
KeyRestrict 0 report key columns, 1 disable reporting of key columns.
LogFile Path and name of the file to write debug output to.
Prefix Data search prefix.
PWD Password.
RemoteHost Server name or IP address of the server.
RemotePort Port the server is monitoring.
SID Session ID.
Silent 0 silent off, 1 silent on.
StripTrailingSpaces 0 strip trailing spaces off, 1 strip trailing spaces.
UID User ID.
ViewDLL Location of the Views DLL.

ODBC Local and Client Server Server Configuration

ProvideX ODBC Driver 4.10 19 Back

Server Configuration B MK

Server Configuration

The configuration settings for the server-side of the ProvideX Client/Server ODBC
allow you to specify a TCP/IP port number, set up and manage the data files access
permissions, and establish the server activation.

When the ProvideX ODBC Client/Server is installed on a Windows system, the
server component is configured using the ProvideX File Server Settings interface.
Under UNIX/Linux, the server is configured using command line arguments and a
configuration text file. The following sections describe the ProvideX File Server
Settings for Windows and Server Settings for UNIX/Linux.

Server Settings for Windows

The server is configured in Windows via the ProvideX File Server Settings interface,
which can be accessed directly from the Control Panel.

The default TCP/IP port number is 20222.

Activation
As with most ProvideX products, valid activation information (serial number,
number of users, and activation key) must be recorded in order to activate the
ProvideX File server. If the activation is accepted, the configuration program returns
a confirmation message when you press Apply.

ODBC Local and Client Server Server Configuration

ProvideX ODBC Driver 4.10 20 Back

It is possible to change the activation at any time. For example, an increase in the
number of users on the system could require a new license and new activation
values. The ProvideX File Server controls the number of concurrent client
connections and denies access if the number of users is exceeded.

Because activations are only verified during the initialization process, the server
must be restarted when a new activation is recorded.

NT Service
The ProvideX File Server installation program checks the operating system and, if it
detects a NT/2000/XP system, it automatically sets it up as a service. On installation,
the server’s Startup Type defaults to Automatic, which means that the ProvideX File
service will start automatically every time the system reboots and will run
independently of any logged-on user. This setting is evident by the message
displayed in the NT Service folder:

ProvideX File Service is running.

As with other services, the IO service can be controlled (stopped, paused, etc.) using
the Windows Services interface, which is accessed via the Control Panel (in the
Administrative Tools subfolder on Windows 2000/XP). The ProvideX File service can
also be uninstalled (and reinstalled) via the NT Service panel.

Permissions
On installation, the server is set to default access permissions. These permissions can
be viewed/changed in the Permissions folder of the ProvideX File Server Settings
interface:

The above default settings grant users almost unrestricted read access to the server’s
data sources. (An asterisk * indicates any.) Therefore, for security reasons, you should
reset the parameters based on your own business rules immediately following
installation.

Note: The NT Service tab will be hidden if the server is installed on Windows 9x
systems — they do not support applications running as services. While it is still
possible to run the ProvideX File Server as an application on a Windows 9x desktop,
it is not recommended. Windows 9x is not designed to be a server class machine.

Setting Default Definition

Access A Access allowed

R/W R Read only

User ID * Any users

Company Code * Any company

Data Dictionary Path * Any data dictionaries

INI Path * Any INI files

ODBC Local and Client Server Server Configuration

ProvideX ODBC Driver 4.10 21 Back

The ProvideX File Server checks access permissions by searching the permission
rules from the maximum restriction to the lowest one. It is a method to grant access
to specific directories on the server based on a client's User ID and Company Code.

If the check for a specific User ID and Company Code fails, then the User ID is
substituted with * (any) and the combination for User ID = any with Company Code =
specific is checked against the corresponding rule if it is present on the system. The
next check is performed for User ID = specific, Company Code = any, and the last
check is for User ID = any, Company Code = any. Refer to the following table:

In the following example, user John from ABC company is granted access to the data
files defined in the providex.ddf files located in c:\pvxdata and/or
c:\pvx\mydata directories and in the test.ini file located in c:\nomtrain:

According to this example, the server administrator has temporarily denied John
access; however, John would still have read-only access to directories as all users of
all companies may access any directory.

Sequence UserID Company Code

1. Specific Specific Highest Restriction

2. Any Specific

3. Specific Any

4. Any Any Lowest Restriction

ODBC Local and Client Server Server Configuration

ProvideX ODBC Driver 4.10 22 Back

Server Settings for UNIX/Linux

There is no configuration interface for the ProvideX File Server installed on a
UNIX/Linux system. Instead, the server behaviour is controlled via command line
arguments and a plain text configuration file (pvxiosvr.conf). For a description of
ProvideX UNIX/Linux ODBC Server components and file locations, see UNIX/Linux -
ProvideX File Server, p.8.

Running the Server
Run the server from the command line using the following syntax:

dir/pvxiosvr [-f configfile] [-p tcpport]

Where:

Other Server Arguments
The following arguments can also be used with the ProvideX File Server executable
(pvxiosvr) at the command line:

dir Directory path; e.g., /usr/pvxiosvr.

-f configfile Path and file name of the ODBC Server configuration file. If no
configuration file is located, the server will not start and an error
message will be displayed or printed to the log file (if debug is
enabled). See Configuration File, p.23.

If this option is not specified, the server defaults to
./pvxiosvr.conf, followed by
 /usr/pvxiosvr/pvxiosvr.conf, then
/usr/pvxodbc/pvxodbc.conf.

-p tcpport TCP/IP port number the server is to listen on. This overrides the
port number specified in the pvxiosvr.conf file.

-h or --help Display a message listing the available command line options
with brief descriptions.

-v or --version Display the server version information; e.g.,

ProvideX File Server Ver: 4.00.2000 For: RedHat 7.2
Copyright (c) 2005 Sage Software Canada Ltd.

-d or --debug Enable output to the debug log file pvxiosvr.log
-s or --shutdown Server shutdown. See Shutting Down the Server, p.23.

ODBC Local and Client Server Server Configuration

ProvideX ODBC Driver 4.10 23 Back

Shutting Down the Server
The ProvideX File Server records the process ID (pid) of the server in the
pvxiosvr.pid file to assist in shutting down the server; e.g.,

pvxiosvr -s or
pvxiosvr --shutdown

Provided the server can locate the pvxiosvr.pid file, the running server will be
shut down properly; otherwise, an error message will be displayed on standard out.

Alternately, the server can be shutdown using a SIGHUP signal; i.e.,

kill -1 pid

Where pid is the process ID of the ProvideX File Server, pvxiosvr.

Configuration File
The UNIX/Linux version of the IO Server must have access to the pvxiosvr.conf
file to be configured for use. If this file cannot be located, the IO Server will attempt
to automatically create one based on the pvxiosvr.conf.sample file provided
with the installation taz file. If neither of these files can be accessed, then an error is
reported. If the activation key is invalid, the server will operate in Demo mode. If the
port number is invalid, it will default to 20222.

The server checks for three entries in the pvxiosvr.conf file:

TCP/IP Port Number port=20222

TCP Port number that the server will listen on. The
default value is 20222.

Activation Information serial=12345-20-ABC0123456789DEF

Activation information for running this software. Enter
your activation information as follows:

serial=xxxxx-y-zzzzzzzzzzzzzzzz

Where:

xxxxx Serial number.
y User count.
zzzzzzzzzzzzzzzz Activation key.

To run the IO Server in demo mode, leave the serial=
blank. When installing ODBC as part of an eCommerce or
Professional licence, use your temporary key to activate the
server. Permanent keys that are generated for bundled
activations do not apply to ODBC components.

For licensing information, refer to the ProvideX
Installation and Configuration Guide.

ODBC Local and Client Server Server Configuration

ProvideX ODBC Driver 4.10 24 Back

Permissions
The server configuration file allows customizable security for users and files. Security
entries are case-insensitive except where noted. All the non-alpha characters, “/=[]”,
are part of the security syntax. The format of a security policy appears as follows:

user id/company code=[mode][type][data dictionary][ini file]

Where:

The ProvideX File Server checks access permissions by searching the permission
rules from the maximum restriction to the lowest one. It is a method to grant access
to specific directories on the server based on a client's User ID and Company Code.

File Access Security
Policies

security:
/=[a][r][*][*]

Customizable security for users and files.

The server initially defaults to "no access". Security rules
must be established to provide access to the data. The
security syntax and permissions sequence are described
under Permissions below.

The above settings, which appear in the sample
configuration file, grant users almost unrestricted read
access to the server’s data sources. (An asterisk * indicates
any.) Therefore, for security reasons, you should reset
these parameters based on your own business rules prior
to operating the server in a live environment.

user id Specific user ID supplied by the client driver. An asterisk *
signifies all user IDs. Spaces are significant. “John /” and
“John/” are considered two different entries.

company code Specific company code supplied by the client driver. An asterisk *
signifies all company codes. Spaces are significant. “/ ABC” and
“/ABC” are considered two different entries.

mode Either A for access or D for denied. If in denied mode, the administrator
can temporarily deny access without removing the policy entry.

type Either R for read-only or RW for read-write

data dictionary A comma or semi-colon separated list of paths to the providex.ddf
files that the client’s DSN will have access to. An asterisk * signifies that
any Data Dictionary path is valid. This entry is case-sensitive.

ini file Comma or semi-colon separated list of paths and file names of INI
files that the clients DSN will have access to. An asterisk * signifies
any INI file path and file name. This entry is case-sensitive.

ODBC Local and Client Server Server Configuration

ProvideX ODBC Driver 4.10 25 Back

If the check for a specific User ID and Company Code fails, then the User ID is
substituted with * (any) and the combination for User ID = any with Company Code =
specific is checked against the corresponding rule if it is present on the system. The
next check is performed for User ID = specific, Company Code = any, and the last
check is for User ID = any, Company Code = any. Refer to the following table:

By default, access to all ODBC resources is denied, unless access is granted via a
security policy configuration line.

Sample Configuration Entries
serial=12345-6-123456789ABCDEF0
port=20000
security:
/=[a][r][*][*]
John/ABC=[D][RW][/pvxdata;/pvx/mydata][/nomtrain/test.ini]

Automatic Start
In order to have the ODBC UNIX/Linux server start automatically it must be set up
in the inittab file. Each inittab entry is position dependent and has the
following format:

id:rstate:action:process

Where:

The following is an example of an inittab entry for the ProvideX File Server:

Sequence UserID Company Code

1. specific Specific Highest Restriction

2. Any Specific

3. Specific Any

4. Any Any Lowest Restriction

Note: Access policies are currently kept only by User ID/Company Code, which
means that each User ID/Company Code may only have one policy entry. It is not
currently possible to specify that a specific User ID/Company Code has read access to
one set of entries, and read-write access to a different set of entries.

id Unique identifier for the entry.

rstate Run-level for which this entry is to be processed. More than one
run-level can be specified

action Actions to affect the process specified.

process Command to be executed by the system.

ODBC Local and Client Server Table Definitions

ProvideX ODBC Driver 4.10 26 Back

podb:2:once:/usr/pvxiosvr/pvxiosvr -f /usr/pvxiosvr/myOdbc.conf </dev/null
>/dev/null 2>&1

The above example would start the ProvideX File Server the first time the server
booted to run level 2. The configuration file named myOdbc.conf located in
/usr/pvxiosvr/ would be used to configure the server. Any messages sent to
standard out or standard error by the server would be suppressed. If the server
stopped for any reason the system will not restart it.

Table Definitions B MK

Table Definitions

In order to access ProvideX data files in ODBC, the contents of the files (or tables)
must be described for use with the ProvideX ODBC Driver. Tables can be defined in
two ways:

• ProvideX Data Dictionary. This is the preferred method, as files are easily defined
using NOMADS Data Dictionary Maintenance and are fully compatible with the
ProvideX ODBC driver.

• Formatted text file (INI file). Files are created manually. This method is required
when files contains multiple record types.

Data Dictionary and INI file locations are defined for the ProvideX ODBC driver
using the ODBC Data Source Administrator. For more information, see Local & Client
Configuration, p.10.

This section describes both methods for defining data sources for use with the
ProvideX ODBC driver: ProvideX Data Dictionary and INI Definition.

Terminology
When working with ODBC, the standard term for a set of data is a table. In ProvideX
a table is often a physical file. In this manual the terms table and file are both used.
When the manual refers to the data as stored on disk the term physical file is used.
Also note that due to the ability to store multiple record formats in a single physical
file there may be multiple logical tables for a single physical file.

ProvideX Data Dictionary

ProvideX Data Dictionary file definitions created in NOMADS are compatible with
the ProvideX ODBC driver.

Warning: Modifications to the inittab/startup scripts on a UNIX/Linux system
may cause serious problems. All changes should be performed by qualified personnel.

Note: As of Version 5, the ProvideX Data Dictionary Maintenance allows the entry of
multiple record definitions. However, the ODBC driver does not use this information.
The ODBC driver will read only the first record format.

ODBC Local and Client Server Table Definitions

ProvideX ODBC Driver 4.10 27 Back

Data Dictionary Maintenance is a menu-driven utility in NOMADS that allows you
to define files by entering pertinent information for each element (variable name,
type, length, delimiter, etc…). From this information, ProvideX builds and maintains
the Data Dictionary for your given database and creates corresponding entries in:

• providex.ddf file (table definitions)

• providex.dde file (column definitions).

As well, the data dictionary for each of your data source definitions is embedded in
the corresponding physical database file. For more information on the ProvideX
Data Dictionary, refer to the NOMADS Reference Manual.

The ProvideX ODBC driver reads the providex.ddf file to obtain a listing of
tables/files from your Data Dictionary. As each data source defined in the
providex.ddf file is accessed, the ProvideX ODBC driver reads its embedded data
dictionary to determine the fields and the format of the data.

Any table defined in the providex.ddf file whose logical name begins with an
asterisk * will not be made available to the user by the ODBC driver.

The ability to define non-normalized data files (i.e., files with multi-format records) is
allowed in the Data Dictionary Maintenance; however, the ODBC driver will only
recognize and use the first record format. To define non-normalized files, use an INI
Definition.

Fields Used by the ODBC Driver
The ProvideX ODBC driver uses the following fields from the Data Dictionary
Maintenance > Element Description screen in NOMADS:

Name Column name as displayed. Must be unique within the table.
Maximum length is 30 characters.

Class Optional field used to control the output type of the data.
Maximum length is 30 characters. See Classes, p.32.

External Only Enable this flag to identify that the field exists as part of external
key only.

Type and
Format Mask

Type and format mask elements combined. This describes both the
output type (String or Number) and how the data will be formatted
in the record. See Type-Format Mask Combinations below for
the complete list of element combinations.

Length Precision, or maximum length, of the data field. The scale, or
number of digits to the right of the decimal place, is optional; e.g.,

6 Describes integer of 6 digits total.
6.2 Describes numeric of 6 digits total, 2 are right of decimal point.

Maximum length is 6 digits total. Maximum precision is 999999.
Maximum scale is 99.

ODBC Local and Client Server Table Definitions

ProvideX ODBC Driver 4.10 28 Back

Type-Format Mask Combinations
The table below lists all of the Type and Format Mask element combinations used by
the ODBC driver. The equivalent of the element combination for the INI definition
appears in the column on the right.

Occurs Dimensions of an array. If the value is a single number, such as 3,
then it is considered to be a single element of an array rather
than an entire array. If this field contains two values, colon
separated, then the ODBC driver will generate multiple column
names (column name + underscore + numeric index) for the
elements in the array.

For example, MyArray occurs 3 times (has 3 dimensions). The
ODBC driver will generate column names:

 MyArray_1, MyArray_2, MyArray_3

to represent the elements in the array.

Type - Format Mask Description INI Equivalent

String - Delimited Default. String of variable length up to the size
defined by Length. Field delimiter terminates field.

string, variable

String - Fixed Trailing spaces are stripped during read.If the field
is the last segment of an external key then it will not
be padded with spaces during insert/update.
Non-external key fields are padded with spaces
during insert/update. Field has no field delimiter.

string, fixed

String - Padded Always padded with spaces during insert/update.
Fields are not stripped of trailing spaces during
read. Field has no field delimiter.

string, nostrip

String - Substring Always padded with spaces during insert/update.
Fields are not stripped of trailing spaces during
read. Field has no field delimiter.

string, substring

String -
Last Substring

Always padded with spaces during insert/update.
Fields are not stripped of trailing spaces during
read. Field delimiter terminates field.

string, padded

Number - Delimited Number of variable length up to the size defined
by Length. Field delimiter terminates field.

numeric, variable

Number - Fixed Sub-stringed field. Field has an implied decimal
point if scale is provided. Field has no field
delimiter.

numeric, fixed

Number - Padded Sub-stringed field. Field has an implied decimal
point if scale is provided. Field has no field
delimiter.

numeric, nostrip

Number - Substring Sub-stringed field. Field has no field delimiter. numeric, substring

Number -
Last Substring

Sub-stringed field. Field delimiter terminates field. numeric, padded

ODBC Local and Client Server Table Definitions

ProvideX ODBC Driver 4.10 29 Back

INI Definition

Structured text files (INI files) may be used to manually define data that is not
normalized (i.e., data sources with more than one record type), or cannot be handled
by the ProvideX Data Dictionary. INIs are typically used to define files from legacy
systems that were not created using the NOMADS Data Dictionary facilities.

These definition files consist of a table declaration section that assigns a logical table
name to the physical path of each file. The logical names become section headings
for column definitions. The maximum line length in an INI definition is 255
characters. The INI contents are described in the following sections.

Table Declaration
The[*tables*] declaration section is used to assign a logical name to a database’s
physical filename. For example:

[*tables*]
INVOICELINE=\INVOICE\INVLINE
Client= =%c$+"cstfile"

The [*tables*] section heading is not case sensitive; however, square brackets,
asterisks, and the word tables are all part of the required syntax. The syntax for
assigning a logical table appears as follows:

table_name=path_filename[,alternate.INI][,SORTTABLE]

Where:

Number -
Binary Numeric

Sub-stringed field. Field has no field delimiter. numeric, binary

Number - Decimal Sub-stringed field which is number with an
embedded decimal. Field has no field delimiter.

numeric, decimal

Number -
Decimal Delimited

Sub-stringed field which is number with an
embedded decimal. Field delimiter terminates field.

numeric, delimited

Number -
Sign Fixed Numeric

Sub-stringed field. Field has no field delimiter. numeric, signed

Number -
Unsigned Integer

Sub-stringed field. Field has no field delimiter. uni

Type - Format Mask Description INI Equivalent

Note: The square brackets enclosing section headings are part of the INI syntax. Other
square brackets in the format examples below indicate optional elements.

table_name Logical name assigned to the physical file. For example, invoiceline
is the logical name for the invline file in the invoice directory:

[*tables*]
invoiceline=\invoice\invline

ODBC Local and Client Server Table Definitions

ProvideX ODBC Driver 4.10 30 Back

Column Declaration
The record descriptors define logical columns extracted from the ProvideX data file
with each entry consisting of:

• The column name as it appears to the user.

• Additional parameters separated by commas.

The minimum information required is a column name and its length. All columns
default to string, delimited. The column descriptors can be in any order and are
comma delimited. Only the first 3 characters of the keywords are required. Invalid
keywords are ignored.

Column descriptors have the following format:

[table_name]
column_name = LENGTH=n,[type, formatting, attributes]

Where:

path_filename Physical location and file name of database in the system. Either
absolute or relative path names can be specified. Relative path
names are resolved based on the database directory setting in the
ODBC driver configuration.

If the first character of the path is an equals sign =, the ProvideX
ODBC driver treats the path as an expression and replaces all
instances of %C$ with company, %U$ with user ID, and %S with
session ID that are supplied during the connection; e.g.,

Client= =%c$+"cstfile"

In this example, if ABC is entered in the company field of the
ODBC driver, then Client would be evaluated to ABCcstfile.

alternate.INI Optional alternate INI definition file. Early Windows systems
had a limit on the amount of information that could be stored in
a single INI file. This option allows the definition to be spread
over multiple INI files to keep the size of any one file below 64K.

SORTTABLE Optional entry informing the ODBC driver that the column
definitions are not defined in the file in physical order. The
physical order is controlled through the use of the FIELD=
keyword. The default is that all fields are defined in the physical
order that they exist in the file.

[table_name] Section heading for the column definition. This is the logical table
name assigned to the file. Square brackets are part of the syntax.

ODBC Local and Client Server Table Definitions

ProvideX ODBC Driver 4.10 31 Back

column_name Logical name of the column; e.g,

[Client]
CustomerID=STRING,LENGTH=6,FIELD=1,OFFSET=0
Name=LEN=20

In this example, CustomerID is the first column in the logical table
[Client] and Name is the second.

LENGTH=n Mandatory value. Use a numeric expression or integer for n; e.g.,
LEN=30. If desired, you can set the number of digits to the right of
the decimal; e.g., LEN=5.2.

type Optional type. The following keywords set the type of the data:

BNR Numeric values stored as a signed binary.
LOGICAL Logical field - resulting output type is SQL_BIT.
MAS90*YEAR Special Sage MAS 90 Year only format.
NUMERIC Numeric value - in a ProvideX file, this is an

an ASCII representation of the number.
STRING ASCII string, default.
UNI Data is an unsigned integer stored as a binary.
UNSIGNEDBINARY Numeric value stored as unsigned binary.

formatting Optional format mask. The following keywords describe the layout
of data in the file:

BINARY Numeric value stored as a signed binary as a
sub-string of a longer field.

DECIMAL Sub-stringed numeric with an embedded decimal.
Numerics are right justified.

DELIMITED Alternate description for PADDED with the exception
of how numerics are handled. If the field is a
numeric then it will be space-padded, right justified.

FIXED Fixed length with no separator, trailing spaces
stripped on read. Numerics are right justified.

I86 Swapped. On Intel machines numbers are natively
stored as swapped; e.g., 0001 is stored as 0100.

NOSTRIP Sub-string - trailing spaces are never stripped.
Same as the Data Dictionary formats Padded and

 Substring.
PADDED Fixed length, padded to length and with a field

delimiter. Same as the Data Dictionary format:
Last Substring

SIGNED Same as NUMERIC,FIXED except the 1st character
of the field will have a negative sign (-).

SUBSTRING Same as NOSTRIP. Added for consistency with
Data Dictionary.

VARIABLE Variable length delimited by $8A$, default.

ODBC Local and Client Server Table Definitions

ProvideX ODBC Driver 4.10 32 Back

Classes
Classes are used to define the format of special string or numeric data types; e.g., date
values require special formatting. The class option can be used to convert to and from
the SQL date format (YYYY-MM-DD) to the format of the date field stored in ProvideX
files. The maximum length for a date field is 30 characters.

Since there are no rules on date formatting, separate keywords are available to assist the
driver converting data to and from the SQL date format. Use keywords in the CLASS
field to define a date in a Data Dictionary definition. Use CLASS= in an INI definition.

Date Formats
The syntax for a date definition appears as follows:

DATE[keywords]

DATE with no optional keywords defaults to YYYYMMDD.

attributes Optional attributes that are not handled by the Data Dictionary:

CLASS=str Class declaration. See Classes below.
FIELD=n Logical column number in the record. Zero

indicates "from start of record". The INI default is
"in sequential order by position in the list".

FORMAT=value Mask to be applied to the data when returned to the
calling application. Maximum is 39 characters.

HIDE Field is not in Data Dictionary (use for fields
duplicated in key) and not available to user (use
for filler values).

KEY Defines external key fields.
MUSTBE="str" String comparison for filtering data. If the condition is
MUSTBE<"str" not met, the record is skipped. Maximum is 80
MUSTBE>"str" characters. See Record Selection, p.34.
NOSHOW Field in Data Dictionary, data never returned.
OFFSET=n Defines the offset (zero based) in the field.
RECTYPE=value
or *RECTYPE Flattens data. See Record Selection, p.34.
SAMEAS Used to link duplicate columns. This attribute is

designed for columns which comprise an external
key, and the data is duplicated in the record; e.g.,
CustId=len=6
CustId_dup=len=6, sameas=CustId,hide

During insert/update operations, the data is copied
from the column referenced to the target column.

SEPARATOR= Delimiter for variable length field. Use the decimal
value of your delimiter character; e.g., for the LF
character ($0A$) you would use either
SEPARATOR=10 or SEP=10.

ODBC Local and Client Server Table Definitions

ProvideX ODBC Driver 4.10 33 Back

The following secondary keywords can be included to further define the format:

Example:

The INI field definitions for dates in a DATE_data record appear as follows:
[DATE_data]
Date_1=String,len=8,class=DATE-YYYYMMDD
Date_2=String,len=8,class=DATE-YY-MM-DD
Date_3=String,len=4,class=DATE-BCD-JUL
Date_4=String,len=4,class=DATE-PACK-YYYYMMDD

Right-Justified Data
The format for right-justified data appears as follows:

RIGHT[nnn]

where nnn is the decimal value of the fill character. If a fill value is not supplied,
then the fill defaults to a space (decimal 32).

External Keys
External keys are an issue when working with ODBC because the data may be
duplicated on the file. This layout can be illustrated as follows:

-BIN Binary value; e.g., DATE-BIN-YYMMDD = BIN(990101,4)
-PACK Packed numeric; e.g., DATE-PACK-YYMMDD = PCK(990101)
-BCD Binary packed decimal; e.g.,

DATE-BCD-YYMMDD = ATH(STR(990101))

-JUL Julian date. The default base year is 1970. The default year can be
overridden by adding a new base year in the format -YYYY. For example,
a base year of 0 zero would be represented as DATE-JUL-0000.

-UNKNOWN Date value is processed as a string, without formatting and validation. This
is provided for debugging purposes as the ODBC driver will report an error
if a date string fails to convert to an SQL date.

*MAS90 Sage MAS 90 packed date.
*SSI Infor Global Solutions FACTS packed date.
-AAMMDD
-KKMMDD

AA or KK are special cases of YY. The first time a K or A is encountered and
there have been no Y’s then:

If the first character is greater than or equal to A, the year is
200 + ASC(data$) - ASC('A'); otherwise, the year is
190 + ASC(data$) - ASC('0') or zero. All subsequent occurrences
of A are treated as Y.

If the first character is K , the year is 190 + ASC(data$) - ASC('0').
All subsequent occurrences of K are treated as Y.

Key: Data:

CST_ID CST_ID CST_NAME CST_ADDRCST_ID CST_ID CST_NAME CST_ADDRCST_ID CST_NAME CST_ADDR

ODBC Local and Client Server Table Definitions

ProvideX ODBC Driver 4.10 34 Back

When an external key is used in a ProvideX file, the key data can be stored as part of
the record data as well. The ODBC driver prefixes the data record with the external
key, which can result in key data being duplicated on the record:

The solution is to hide the data from the ODBC end-user; e.g.,

[*Tables*]
Customer=\pvx\nomads\cstfile
[Customer]
CST_ID=STRING,LEN=6,FIXED
CST_ID_DUP=STRING,LEN=6,HIDE,SAMEAS=CST_ID
CST_NAME=STRING,LEN=30
CST_ADDR=STRING,LEN=30

However, the keyword HIDE is only available when using an INI file to define the
data. HIDE is not supported when using the ProvideX Data Dictionary to define file
layouts.

Keyed Files with External Keys - Direct Files
For the purposes of defining fields for a Direct file, the external key is inserted in front of
the record as it is read from the file and passed to the ODBC system. For example, if the
ProvideX file is created with ORD_NUMBER as the 6-byte external key, and
ORD_CUSTOMER and ORD_AMOUNT as data, then the INI record descriptor would be:

[Order]
ORD_NUMBER=STRING,LEN=6,FIXED
ORD_CUSTOMER=STRING,LEN=10
ORD_AMOUNT=NUMERIC,LEN=10.2

If the key is duplicated in the data, you should expose the field that is the key and
hide the duplicate that is within the data portion. The SQL optimizer will recognize
the key field and be able sort the file much faster by using the key chain.

Record Selection

Because ProvideX has allowed users to evolve their applications, some developers
have files that are not normalized. The following techniques are available for use in
an INI file definition to convert a non-normalized data file logically into a
normalized one.

Filtering the File Contents
This creates one logical table per record. The MUSTBE clause allows you to access
specific record formats only. Any records found in the ProvideX data file that do not
satisfy the MUSTBE condition are skipped. Filtering the file usually results in less
rows in the logical tables than records in the physical data file.

CST_ID CST_ID CST_NAME CST_ADDR

ODBC Local and Client Server Table Definitions

ProvideX ODBC Driver 4.10 35 Back

Flattening the Data File
The RECTYPE= and *RECTYPE options allow you to create a logical table that
contains all elements from all possible record formats. This preserves a one-to-one
relationship between the rows in the logical table and the records in the physical file
as all records can be represented as a row. This technique is compatible with
migration to SQL.

Examples of Filtering and Flattening
This section describes how to represent non-normalized data file using either of the
filtering or flattening techniques available in the ProvideX ODBC driver. In this
example, the non-normalized data file INVDTA has two record types:

Record Type 1:

This is an invoice header record with a key of Invoice_no and Line_no (000 pseudo
line number) with data fields of Line_count, Customer_id, and Order_dt.

Record Type 2:

This is an invoice detail record with a key of Invoice_no and Line_no with data
fields of Product_no, Ord_qty, and Sale_price.

Filtering the Data. The example below filters the data in the INVDTA database by
converting it into two data sources, [InvoiceHeader] and [InvoiceDetail],
both logical tables based on the value in Line_no:

[*Tables*]
InvoiceHeader=invdta
InvoiceDetailLines=invdta

[InvoiceHeader]
Invoice_no=STRING,LEN=6
Line_no=STRING,LEN=3,MUSTBE="000",HIDE
Line_count=NUMERIC,LEN=4.0
Customer_id=STRING,LEN=6
Order_dt=STRING,LEN=8

[InvoiceDetailLines]
Invoice_no=STRING,LEN=6
Line_no=STRING,LEN=3,MUSTBE>"000"
Product_no=STRING,LEN=8
Ord_qty=NUMERIC,LEN=5.0
Sale_price=NUMERIC,LEN=8.2

If more than one field defines the record type, then the data must be filtered using
the MUSTBE keyword. The maximum length of a MUSTBE value is 80 characters.

Invoice_no Line_no Line_count Customer_id Order_dt

Invoice_no Line_no Product_no Ord_qty Sale_price

ODBC Local and Client Server Table Definitions

ProvideX ODBC Driver 4.10 36 Back

Flattening the Data File. A data file is flattened using the keywords *RECTYPE and
RECTYPE=. When flattened, the fields for each record format exist in each row of the
logical table.

For example, the data field Line_no would be declared the record type identifier
(*RECTYPE clause). In the example below, the header records are identified by the
RECTYPE="000" and the detail records by the RECTYPE="~000". Note FIELD=1
on the Product_no entry. The driver reads through the fields and if the FIELD=1 is
not there, the driver assumes that Product_no is the fourth field.

The value on the right of RECTYPE= can be multiple values; e.g., Line_count is
part of 3 different record formats the RECTYPE value would appear as follows:

RECTYPE = "000001002"

Thus, Line_count would appear in record formats, "000", "001", and "002".

Example:

[*Tables*]
InvoiceData=invdta
[InvoiceData]
Invoice_no=STRING,LEN=6,FIXED
Invoice_line=STRING,LEN=3,FIXED,*RECTYPE
Line_count=NUMERIC,LEN=4.0,RECTYPE="000"
Customer_id=STRING,LEN=6,RECTYPE="000"
Order_dt=STRING,LEN=8,RECTYPE="000"
Product_no=STRING,LEN=8,RECTYPE="~000",FIELD=1
Ord_qty=NUMERIC,LEN=5.0,RECTYPE="~000"
Sale_price=NUMERIC,LEN=8.2,RECTYPE="~000"

The leading tilde ~ in the RECTYPE="value" clause indicates that the record data
must not match the value given. The *RECTYPE keyword only allows for a single
field per table to be defined. If multiple fields define the record type, then use the
MUSTBE keyword.

Invoice_no Line_no Line_count Customer_id Order_dt Invoice_no Line_no Product_no Ord_qty Sale_price

Invoice_no Line_no Line_count Customer_id Order_dt Product_no Ord_qty Sale_price

 Line_no = "000"
Line_no ≠ "000"

ODBC Local and Client Server Table Definitions

ProvideX ODBC Driver 4.10 37 Back

Example Data and Definitions

The following example consists of all the possible field types:

STRINGDLM$="ABCD"
STRFIX$="EFGH"
STRPAD$="IJKL"
STRSUB$="MNOP"
STRLAST$="QRST"
NUMDLM=1.2
NUMFIX=3.4
NUMPAD=5.6
NUMSUB=7.8
NUMLAS=9.1
NUMBIN=2.3
NUMDEC=4.5
NUMDECDLM=6.7
NUMSGN=8.9
NUMUNS=12
LASSTR$="UVWX"

The following example shows the record as it would appear in the physical file.
Values delimited by curly braces, “{}”, are hexadecimal values. Line breaks are for
readability only:
ABCD{8a}EFGHIJKLMNOPQRST{8a}
1.2{8a}00340005600780091
{8a00000017} 4.5 6.7{8a}089+{0000000C}UVWX{8a}

The INI file definition appears as follows:
[*Tables*]
ODBC = odbcflds.dat
[ODBC]
stringdlm = STRING, FIELD=1, OFFSET=0, LEN=4, VARIABLE
strfix = STRING, FIELD=2, OFFSET=0, LEN=4, FIXED
strpad = STRING, FIELD=2, OFFSET=4, LEN=4, NOSTRIP
strsub = STRING, FIELD=2, OFFSET=8, LEN=4, SUBSTRING
strlast = STRING, FIELD=2, OFFSET=12, LEN=4, PADDED
numdlm = NUMERIC, FIELD=3, OFFSET=0, LEN=4.1, VARIABLE
numfix = NUMERIC, FIELD=4, OFFSET=0, LEN=4.1, FIXED
numpad = NUMERIC, FIELD=4, OFFSET=4, LEN=4.1, FIXED
numsub = NUMERIC, FIELD=4, OFFSET=8, LEN=4.1, FIXED
numlas = NUMERIC, FIELD=4, OFFSET=12, LEN=4.1, PADDED
numbin = NUMERIC, FIELD=5, OFFSET=0, LEN=4.1, BINARY
numdec = NUMERIC, FIELD=5, OFFSET=4, LEN=4.1, DECIMAL
numdecdlm = NUMERIC, FIELD=5, OFFSET=8, LEN=4.1, DELIMITED
numsgn = NUMERIC, FIELD=6, OFFSET=0, LEN=4.1, SIGNED
numuns = NUMERIC, FIELD=6, OFFSET=4, LEN=4, UNSIGNEDBINARY
lasstr = STRING, FIELD=6, OFFSET=8, LEN=4, PADDED

ODBC Local and Client Server Table Definitions

ProvideX ODBC Driver 4.10 38 Back

The Data Dictionary definition appears as follows:

Generating INI Table Definitions

INI table definitions may be generated in NOMADS Data Dictionary Maintenance
by selecting Generate external/INI file contents from the Utilities menu. Select a table
name and press Generate. The table entry is generated and displayed and the
contents may be cut and pasted from the display, or exported to a text file.

INI table definitions may also be generated using the following program call:

CALL "*Dict/Defini",Contents$,ErrMsg$,TableName$,DDFpath$

Where:

Contents$ Returns a string containing the table definition.

ErrMsg$ Returns an error message if problems are encountered during
generation, or null if successful.

ODBC Local and Client Server Table Definitions

ProvideX ODBC Driver 4.10 39 Back

In the case of tables with multiple record formats, a table entry is created for each
format, using the MUSTBE clause to identify the field used as the record type
indicator.

TableName$ Logical name of the table for which the definition is generated.

DDFpath$ Path of the providex.ddf file containing the table definition.

ODBC Local and Client Server Using the ODBC Driver

ProvideX ODBC Driver 4.10 40 Back

Using the ODBC Driver B MK

Using the ODBC D river

Primarily, ODBC is used to provide read access to data files from other products
such as Crystal reports, Excel, or Word. Most programming languages have an
ODBC access facility to allow files to be read or updated as well. The process of
bringing ProvideX data to your application begins with making a data connection —
the steps involved will vary according to your application and your server
technology. For specifics on ProvideX ODBC DSNs and connection information, refer
to the Local & Client Configuration, p.10.

Once a data connection is established, the ProvideX data itself can be accessed from
the database using SQL commands. As mentioned earlier, SQL (Structured Query
Language) is the standard interactive and programming language for accessing and
manipulating databases. This sections describes the specific elements of SQL that can
be used with ProvideX ODBC.

Statements
An SQL statement is used to perform various operations on the database. The
ProvideX ODBC driver supports four types of SQL statements: SELECT, which
retrieves data from the database; INSERT, which adds new data to the database;
DELETE, which removes data from the database; and UPDATE, which changes data
in the database.

Joining
SQL statements operate with logical sets of data — they declare what data is
required, not how the data is to be retrieved. When data is required from two tables,
the statement must establish a relationship between Table 1 and Table 2. In SQL, this
concept is called joining. The join operation selects rows from two different tables
such that the value in one column of Table 1 also appears in a column of Table 2.

For example, a customer table includes a code for sales representatives called
SALESREP and the sales representative table includes a SALESREP code among other
information about sales representatives (names, addresses etc). A join relationship
between the customer table and sales representative table can be established because
they each have a SALESREP column.

The ProvideX ODBC driver supports three types of joins:

CROSS JOIN Returns all the records in Table 2 for each common record in
Table 1. To create a cross join, a comma is used to separate
the declared tables. As of Version 3.32, the keywords CROSS
JOIN can be used in place of the comma; e.g.,

SELECT * FROM Customer, SalesReps

ODBC Local and Client Server Using the ODBC Driver

ProvideX ODBC Driver 4.10 41 Back

Providex Views
Please note that ProvideX Views requires the ProvideX COM interface and is
therefore only available with the ProvideX Local ODBC driver or the ProvideX File
Server for Windows. Views also requires a copy of ProvideX Version 5.1 or later be
installed.

SQL Syntax Table

The ProvideX ODBC driver supports the SQL syntax described in the table below.
For an illustration of this syntax, see Constructing a Left Outer Join Using the
Syntax Table, p.50.

In the following table, SQL keywords are shown in uppercase, vertical bars (pipes)
"|" separate choices where more than one command is represented, and a blank
indicates that no qualifier is required:

[INNER] JOIN Discards unmatched rows in either table. As of Version 3.32,
the keyword INNER is optional; e.g.,

SELECT * FROM { oj Customer INNER JOIN SalesReps
ON Customer.SALESREP = SalesReps.SALESREP }

LEFT [OUTER] JOIN Will, for each record in Table 1, join the matching record in
Table 2, if any. As of Version 3.32, the keyword OUTER is
optional; e.g.,

SELECT * FROM { oj Customer LEFT OUTER JOIN SalesReps
ON Customer.SALESREP = SalesReps.SALESREP }

Syntax Description
statement SELECT top select orderby | INSERT insert |

DELETE delete | UPDATE update

top blank| TOP integer
select selectcols FROM tablelist where groupby having
delete FROM tablename where

insert INTO tablename insertvals
update tablename SET setlist where
setlist set | setlist , set

set columnname =NULL | columnname = expression
insertvals (columnlist) VALUES (valuelist) | VALUES (valuelist) |

(columnlist) VALUES (SELECT select) |
 VALUES (SELECT select)

columnlist columnname , columnlist | columnname
valuelist NULL , valuelist | expression , valuelist | expression | NULL
selectcols selectallcols * | selectallcols selectlist

ODBC Local and Client Server Using the ODBC Driver

ProvideX ODBC Driver 4.10 42 Back

selectallcols blank| ALL| DISTINCT
selectlist selectlistitem , selectlist | selectlistitem

selectlistitem expression | expression aliasname |
expression AS aliasname | aliasname.* | colref

where blank| WHERE boolean
having blank| HAVING boolean
boolean and | and OR boolean

and not | not AND and
not comparison | NOT comparison
comparison (boolean)| colref IS NULL| colref IS NOT NULL |

expression LIKE pattern | expression NOT LIKE pattern|
expression IN (valuelist)| expression NOT IN (valuelist)|
expression op expression | EXISTS (SELECT select)|
expression op selectop (SELECT select)|
expression IN (SELECT select)|
expression NOT IN (SELECT select)|
expression BETWEEN expression AND expression)|
expression NOT BETWEEN expression AND expression)

selectop blank| ALL | ANY
op > | >= | < | <= | = | <>

pattern string | ? | USER
expression expression + times| expression - times| times
times times * neg| times / neg| neg

neg term | + term | - term
term (expression) | colref | simpleterm | aggterm scalar
scalar scalarescape| scalarshorthand

scalarescape --*(VENDOR(MICROSOFT),PRODUCT(ODBC) FN fn)*--
scalarshorthand { FN fn }
fn functionname (valuelist)| functionname()
aggterm COUNT (*) | AVG (expression) | MAX (expression) |

MIN (expression) | SUM (expression) | COUNT (expression)
simpleterm string| realnumber| ?| USER| date| time| timestamp
groupby blank| GROUP BY groupbyterms
groupbyterms colref| colref , groupbyterms

orderby blank| ORDER BY orderbyterms
orderbyterms orderbyterm| orderbyterm , orderbyterms
orderbyterm colref asc| integer asc

Syntax Description

ODBC Local and Client Server Using the ODBC Driver

ProvideX ODBC Driver 4.10 43 Back

asc blank| ASC| DESC
colref aliasname . columnname| columnname

tablelist tablelistitem , tablelist| tablelistitem
tablelistitem tableref | outerjoin
outerjoin ojescape | ojshorthand

ojescape --*(VENDOR(MICROSOFT),PRODUCT(ODBC) OJ oj)*--
ojshorthand { OJ oj }
inneroj tableref INNER JOIN tableref ON boolean |

tableref INNER JOIN inneroj ON boolean
oj tableref LEFT OUTER JOIN tableref ON boolean |

tableref LEFT OUTER JOIN oj ON boolean | inneroj
tableref tablename | tablename aliasname

indexname identifier
functionname identifier (see Scalar Functions, below).
tablename identifier

datatype identifier
columnname identifier
aliasname identifier

identifier Identifier (must be enclosed in double quotes if it contains
spaces).

string String (enclosed in single quotes).
realnumber Non-negative real number (including E notation).
integer Non-negative integer.

date dateescape | dateshorthand
dateescape --*(VENDOR(MICROSOFT),PRODUCT(ODBC) d dateval)*--
dateshorthand { d dateval }
dateval Date in yyyy-mm-dd format in single quotes; e.g., '1996-02-05'.
time timeescape | timeshorthand
timeescape --*(VENDOR(MICROSOFT),PRODUCT(ODBC) t timeval)*--
timeshorthand { t timeval }
timeval Time in hh:mm:ss format in single quotes; e.g., '10:19:48')
timestamp timestampescape | timestampshorthand

timestampescape --*(VENDOR(MICROSOFT),PRODUCT(ODBC) ts timestampval)*--
timestampshorthand { ts timestampval }
timestampval Timestamp in yyyy-mm-dd hh:mm:ss[.ffffff] format in

single quotes; e.g., '1996-02-05 10:19:48.529'.

Syntax Description

ODBC Local and Client Server Using the ODBC Driver

ProvideX ODBC Driver 4.10 44 Back

Scalar Functions
Scalar functions are supported through the use of the escape sequence:

{ fn scalar function }

The argument scalar function can be any of the string, numeric, or time and date
functions listed in this section. The supported scalar functions are listed with
descriptions of their results in the sections that follow:

String Functions
ASCII(string) Integer representing the ASCII code value of the

leftmost character of string.

BIT_LENGTH(string) Length in bits of string.

CHAR(num) Character that has the ASCII code value specified by
num. The value of num should be between 0 and 255.

CHAR_LENGTH(string) or
CHARACTER_LENGTH(string)

Length in characters of the string, if string is of a
character data type.

CONCAT(string1, string2) Character string that is the result of concatenating
string2 to string1.

DIFFERENCE(string1, string2) Integer value that indicates the difference between
the values returned by the SOUNDEX function for
string1 and string2.

INSERT(string1, start, length, string2)

Character string where length characters have
been deleted from string1, beginning at start, and
where string2 has been inserted into string1,
beginning at start.

LCASE(string) String equal to that in string, with all uppercase
characters converted to lowercase.

LEFT(string, count) Leftmost count characters of string.

LENGTH or LEN(string) Number of characters in string, excluding trailing blanks.

LOCATE(string1, string2[, start])

Starting position of the first occurrence of string1
within string2. The search for the first occurrence
of string1 begins with the first character position in
string2 unless the optional argument, start, is
specified. If start is specified, the search begins
with the character position indicated by the value
of start. The first character position in string2 is
indicated by the value 1. If string1 is not found
within string2, the value 0 is returned.

LTRIM(string) Characters of string, with leading blanks removed.

ODBC Local and Client Server Using the ODBC Driver

ProvideX ODBC Driver 4.10 45 Back

Numeric Functions

OCTET_LENGTH(string) Returns the length in bytes of string.

POSITION(string1IN string2) Position of string1 in string2. The result is an exact
numeric with precision of double and a scale of 0.

REPEAT(string, count) Character string composed of string repeated
count times.

REPLACE(string1, string2, string3) Search string1 for occurrences of string2, and
replace with string3.

RIGHT(string, count) Rightmost count characters of string.

RTRIM(string) Characters of string with trailing blanks removed.

SOUNDEX(string) 4-digit SOUNDEX code.

SPACE(count) Character string consisting of count spaces.

SUBSTRING(string, start, length)
or SUBSTR(string, start, length)

Character string that is derived from string,
beginning at the character position specified by
start for length characters.

UCASE(string) String equal to that in string, but with all lowercase
characters converted to uppercase.

ABS(num) Absolute value of num.

ACOS(float) Arccosine of float as an angle, expressed in radians.

ASIN(float) Arcsine of float as an angle, expressed in radians.

ATAN(float) Arctangent of float as an angle, expressed in radians.

ATAN2(float1, float2) Arctangent of the x and y coordinates, specified by float1
and float2, respectively, as an angle, expressed in radians.

CEILING(num) Smallest integer greater than or equal to num. The return
value is of the same data type as the input parameter.

COS(float) Cosine of float, where float is an angle expressed in radians.

COT(float) Cotangent of float, where float is an angle expressed in radians.

DEGREES(num) Number of degrees converted from num radians.

EXP(float) Exponential value of float.

FLOOR(num) Largest integer less than or equal to num. The return value
is of the same data type as the input parameter.

LOG(float) Natural logarithm of float.

LOG10(float) Base 10 logarithm of float.

MOD(int1, int2) Remainder (modulus) of int1 divided by int2.

ODBC Local and Client Server Using the ODBC Driver

ProvideX ODBC Driver 4.10 46 Back

Time and Date Functions

PI() Constant value of pi as a floating-point value. Pi is defined
internally as :
3.14159265358979323846264338327950288419716939937510

POWER(num, int) Value of num to the power of int.

RADIANS(num) Number of radians converted from num degrees.

RAND([int]) Random floating-point value using int as the optional seed value.

ROUND(num, int) Returns num rounded to int places right of the decimal
point. If int is negative, num is rounded int places to the
left of the decimal point.

SIGN(num) Returns an indicator of the sign of num. If num is less than
zero, -1 is returned. If num equals zero, 0 is returned. If
num is greater than zero, 1 is returned.

SIN(float) Sine of float, where float is an angle expressed in radians.

SQRT(float) Square root of float.

TAN(float) Tangent of float, where float is an angle expressed in radians.

TRUNCATE(num, int) Returns num truncated to int places right of the decimal
point. If int is negative, num is truncated int places to the
left of the decimal point.

CURRENT_DATE() Current date.

CURRENT_TIME[(time-precision)]

Current local time. The time-precision argument
determines the seconds precision of the returned value.

CURRENT_TIMESTAMP[(timestamp-precision)]

Current local date and local time as a timestamp value. The
timestamp-precision argument determines the seconds
precision of the returned timestamp.

CURDATE() Current date.

CURTIME() Current local time.

DAYNAME(date_exp) Character string containing the name of the day for the day
portion of date_exp. Only long English names are
returned; e.g., Monday through Sunday.

DAYOFMONTH(date_exp)

Day of the month based on the month field in date_exp as
an integer value in the range of 1-31.

ODBC Local and Client Server Using the ODBC Driver

ProvideX ODBC Driver 4.10 47 Back

DAYOFWEEK(date_exp) Day of the week based on the week field in date_exp as an
integer value in the range of 1-7, where 1 represents
Sunday.

DAYOFYEAR(date_exp) Day of the year based on the year field in date_exp as an
integer value in the range of 1-366.

EXTRACT(extract-field FROM extract-source)

Returns the extract-field portion of the extract-source. The
extract-source argument is a date time or interval
expression. The extract-field argument can be one of the
following keywords:

YEAR MONTH DAY HOUR
MINUTE SECOND

The precision of the returned value is implementation-
defined. The scale is 0 unless SECOND is specified, in which
case, the scale is not less than the fractional seconds
precision of the extract-source field.

HOUR(time_exp) Hour based on the hour field in time_exp as an integer
value in the range of 0-23.

MINUTE(time_exp) Minute based on the minute field in time_exp as an integer
value in the range of 0-59.

MONTH(date_exp) Month based on the month field in date_exp as an integer
value in the range of 1-12.

MONTHNAME(date_exp)

Character string containing the name of the month for the
month portion of date_exp. Only long English names are
returned; e.g., January through December.

NOW() Current date and time as a timestamp value.

QUARTER(date_exp) Quarter in date_exp as an integer value in the range of 1-4,
where 1 represents January 1 through March 31.

SECOND(time_exp) Second based on the second field in time_exp as an integer
value in the range of 0-59.

TIMESTAMPADD(interval, integer_exp, timestamp_exp)

Returns the timestamp calculated by adding integer_exp
intervals of type interval to timestamp_exp. Valid values of
interval include the following keywords:

SQL_TSI_SECOND SQL_TSI_MINUTE SQL_TSI_HOUR
SQL_TSI_DAY SQL_TSI_WEEK SQL_TSI_MONTH
SQL_TSI_QUARTER SQL_TSI_YEAR

ODBC Local and Client Server Using the ODBC Driver

ProvideX ODBC Driver 4.10 48 Back

For example, the following SQL statement returns the name
of each employee and his or her one-year anniversary date:

SELECT NAME, {fn TIMESTAMPADD(SQL_TSI_YEAR, 1, HIRE_DATE)}
FROM EMPLOYEES

If timestamp_exp is a time value and interval specifies
days, weeks, months, quarters, or years, the date portion of
timestamp_exp is set to the current date before calculating
the resulting timestamp. If timestamp_exp is a date value
and interval specifies seconds, minutes, or hours, the time
portion of timestamp_exp is set to 0 before calculating the
resulting timestamp.

TIMESTAMPDIFF(interval, timestamp_exp1, timestamp_exp2)

Returns the integer number of intervals of type interval by
which timestamp_exp2 is greater than timestamp_exp1.
Valid values of interval include the following keywords:

SQL_TSI_SECOND SQL_TSI_MINUTE SQL_TSI_HOUR
SQL_TSI_DAY SQL_TSI_WEEK SQL_TSI_MONTH
SQL_TSI_QUARTER SQL_TSI_YEAR

For example, the following SQL statement returns the
name of each employee and the number of years he or she
has been employed:

SELECT NAME, {fn TIMESTAMPDIFF(SQL_TSI_YEAR, {fn
CURDATE()}, HIRE_DATE)} FROM EMPLOYEES

If either timestamp expression is a time value and interval
specifies days, weeks, months, quarters, or years, the date
portion of that timestamp is set to the current date before
calculating the difference between the timestamps. If either
timestamp expression is a date value and interval specifies
seconds, minutes, or hours, the time portion of that
timestamp is set to 0 before calculating the difference
between the timestamps.

WEEK(date_exp) Week of the year based on the week field in date_exp as an
integer value in the range of 1-53.

YEAR(date_exp) Year based on the year field in date_exp as an integer
value.

ODBC Local and Client Server Using the ODBC Driver

ProvideX ODBC Driver 4.10 49 Back

Example SQL

The examples below use two tables, Customer and SalesRep. The Customer table
contains four fields CustomerId, Name, SalesRepId and ARBalance. The
SalesRep table contains two fields SalesRepId and Name.

The Customer table contains two rows

The SalesRep table contains three rows

The following tables illustrate the results of the three different joins.

Cross Join
SELECT Customer.Name, SalesRep.Name

FROM Customer Customer, SalesRep SalesRep

Result set ...

Inner Join
SELECT Customer.Name, SalesRep.Name FROM { OJ Customer Customer

INNER JOIN SalesRep SalesRep ON Customer.SalesRepId =
SalesRep.SalesRepId }

Result set ...

CustomerId Name SalesRepId ARBalance

0001 ABC Corp 01 1234.99

0002 Acme Inc 1.23

SalesRepId Name

01 John Doe

02 Jane Smith

03 House Account

ABC Corp John Doe

ABC Corp Jane Smith

ABC Corp House Account

Acme Inc John Doe

Acme Inc Jane Smith

Acme Inc House Account

ABC Corp John Doe

ODBC Local and Client Server Using the ODBC Driver

ProvideX ODBC Driver 4.10 50 Back

Left Outer Join
SELECT Customer.Name, SalesRep.Name FROM { OJ Customer Customer

LEFT OUTER JOIN SalesRep SalesRep ON Customer.SalesRepId =
SalesRep.SalesRepId }

Result set ...

Constructing a Left Outer Join Using the Syntax Table
The following example applies the syntax descriptors explained in the SQL Syntax
Table. In the descriptions below, a "::=" symbol represents the phrase "consists of"
and a "|" symbol represents an exclusive OR.

Suppose we want a statement that will retrieve all rows from the Customer table,
we want to display the customer’s name, and we also want to display the name of
the sales representative when the customer has a sales representative assigned.

Because the Customer table and the SalesRep table both contain a column called
Name we must use an alias so that the ODBC driver can determine which column we
are referring to.

We begin with a statement ::= SELECT select orderby which consists of a select ::=
selectcols FROM tablelist where groupby having, which has selectcols ::=
selectallcols * | selectallcols selectlist. We are want to display a limited number of
columns so we want a selectlist ::= selectlistitem , selectlist | selectlistitem, which
consists of two selectlistitem ::= expression | expression aliasname | expression AS
aliasname | aliasname.* | colref. Our two selectlist items are colref ::= aliasname .
columnname | columnname which are composed of an aliasname ::= identifier and
a columnname ::= identifier. An identifier consists of an identifier (identifiers
containing spaces must be enclosed in double quotes).

As the alias we have chosen to use the name of the table; however, an alias is not
limited to the table name. Thus far we have:

SELECT Customer.Name, SalesRep.Name FROM

Now we parse the tablelist. A tablelist ::= tablelistitem , tablelist | tablelistitem
where a tablelistitem ::= tableref | outerjoin and we want all rows from the first
table and matching rows from the second table, if any. Therefore we need an
outerjoin ::= ojescape | ojshorthand. Since we don’t like to type we use
ojshorthand ::= { OJ oj } where oj := tableref LEFT OUTER JOIN tableref ON
boolean. We have two tableref ::= tablename | tablename aliasname where
tablename ::= identifier.

ABC Corp John Doe

Acme Inc

ODBC Local and Client Server Using the ODBC Driver

ProvideX ODBC Driver 4.10 51 Back

Thus far we have:

SELECT Customer.Name, SalesRep.Name
FROM { OJ Customer Customer
LEFT OUTER JOIN SalesRep SalesRep ON }

The final piece is the relationship between the Customer table and the SalesRep
table which is specified with boolean ::= and | and OR boolean. Ultimately we want
a comparison which is part of not ::= comparison | NOT comparison which is part
of and ::= not | not AND and. The comparison is expression op expression where
the expressions are colref and the op is an =.

The result is:

SELECT Customer.Name, SalesRep.Name
FROM { OJ Customer Customer
LEFT OUTER JOIN SalesRep SalesRep
ON Customer.SalesRepId = SalesRep.SalesRepId }

ODBC Local and Client Server Using the ODBC Driver

ProvideX ODBC Driver 4.10 52 Back

	Menu
	Introduction
	What is ODBC?
	ODBC Architecture
	Why Use ODBC/SQL?

	Installation Procedures
	Windows - ProvideX ODBC Driver or File Server
	UNIX/Linux - ProvideX File Server

	Local & Client Configuration
	Data Source Names (DSN)
	Basic Configuration Entries
	Connection String Keywords

	Server Configuration
	Server Settings for Windows
	Server Settings for UNIX/Linux

	Table Definitions
	ProvideX Data Dictionary
	INI Definition
	Classes
	External Keys
	Record Selection
	Example Data and Definitions
	Generating INI Table Definitions

	Using the ODBC Driver
	SQL Syntax Table
	Scalar Functions
	Example SQL

